2506.10347v1 [cs.LG] 12 Jun 2025

arXiv

LightKG: Efficient Knowledge-Aware Recommendations with
Simplified GNN Architecture

Yanhui Li
Zhejiang University
Hangzhou, China
YanHuilLi@zju.edu.cn

Haonan Zhang
Zhejiang University
Hangzhou, China
haonanzhang@zju.edu.cn

Abstract

Recently, Graph Neural Networks (GNNs) have become the domi-
nant approach for Knowledge Graph-aware Recommender Systems
(KGRSs) due to their proven effectiveness. Building upon GNN-
based KGRSs, Self-Supervised Learning (SSL) has been incorporated
to address the sparity issue, leading to longer training time. How-
ever, through extensive experiments, we reveal that: (1)compared
to other KGRSs, the existing GNN-based KGRSs fail to keep their
superior performance under sparse interactions even with SSL. (2)
More complex models tend to perform worse in sparse interaction
scenarios and complex mechanisms, like attention mechanism, can
be detrimental as they often increase learning difficulty. Inspired by
these findings, we propose LightKG, a simple yet powerful GNN-
based KGRS to address sparsity issues. LightKG includes a sim-
plified GNN layer that encodes directed relations as scalar pairs
rather than dense embeddings and employs a linear aggregation
framework, greatly reducing the complexity of GNNs. Additionally,
LightKG incorporates an efficient contrastive layer to implement
SSL. It directly minimizes the node similarity in original graph,
avoiding the time-consuming subgraph generation and comparison
required in previous SSL methods. Experiments on four benchmark
datasets show that LightKG outperforms 12 competitive KGRSs
in both sparse and dense scenarios while significantly reducing
training time. Specifically, it surpasses the best baselines by an
average of 5.8% in recommendation accuracy and saves 84.3% of
training time compared to KGRSs with SSL. Our code is available
at https://github.com/1371149/LightKG.

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 25, Toronto, ON, Canada

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737026

Dongxia Wang"
Zhejiang University
Hangzhou, China
dxwang@zju.edu.cn

Zhu Sun
Singapore University of Technology
and Design
Singapore
sunzhuntu@gmail.com

Huizhong Guo
Zhejiang University
Hangzhou, China
huiz_g@zju.edu.cn

CCS Concepts

« Information systems — Recommender systems; - Knowl-
edge Graph — Graph Neural Networks.

Keywords

Recommender Systems, Knowledge Graph, Sparse Scenarios, Graph
Neural Network

ACM Reference Format:

Yanhui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo. 2025.
LightKG: Efficient Knowledge-Aware Recommendations with Simplified
GNN Architecture. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD °25), August 3-7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3711896.3737026

1 Introduction

Recommender Systems (RSs) aim to capture user preferences from
their behavior to filter irrelevant information in domains such as
movies, news, and e-commerce [9]. Due to the Matthew effect 3],
interactions in real-world scenarios often concentrate on a few
popular items or active users, resulting in "sparse scenarios" where
the majority of users and items have limited interactions. Such
scenarios pose significant challenges to RSs in providing accurate
and personalized recommendations, where poor performance could
lead to user churn and significant economic losses [18].

To address this, Knowledge Graphs (KGs) have been incorpo-
rated into RSs to provide rich auxiliary information, forming Knowl-
edge Graph-aware Recommender Systems (KGRSs) [31]. Based on
the model framework, KGRSs can be categorized into three types,
among which Graph Neural Network (GNN) emerges as the domi-
nant solution [10], primarily due to their proven effectiveness in
encoding hierarchical relational patterns in KGs. Recent advance-
ments leverage Self-Supervised Learning (SSL) [36, 43] to extract
more supervisory signals, enhancing recommendation performance
in sparse scenarios while leading to longer training time (see Tab. 1).

However, we evaluate the recommendation accuracy of 12 KGRSs
under varying levels of interaction sparsity and observe that while
GNN-based KGRSs always achieve the best performance compared
to other KGRSs in dense scenarios, they generally fail to do so in
sparse scenario even with SSL. Then, we analyze the complexity of
each GNN-based KGRS and find that more complex models tend to

https://orcid.org/0009-0000-2180-9157
https://orcid.org/0000-0001-9812-3911
https://orcid.org/0000-0002-3350-7022
https://orcid.org/0009-0009-9782-4121
https://orcid.org/0009-0004-0011-8612
https://github.com/1371149/LightKG
https://doi.org/10.1145/3711896.3737026
https://doi.org/10.1145/3711896.3737026
https://doi.org/10.1145/3711896.3737026
https://arxiv.org/abs/2506.10347v1

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 1: The Recall@10 and training time per epoch for GNN-
based KGRSs. More recently-proposed models tend to have
longer training time, indicating increased model complexity.

Amazon-book ML-1M Book-Crossing Last.FM

Model Recall time Recall time Recall time Recall time

KGCN(2019) 0.1550 0.76s 0.1594 2.13s 0.0467 0.72s 0.2149 0.71s
Supervised KGNN-LS(2019) 0.1508 1.52s 0.1592 5.92s 0.0330 1.50s 0.2117 1.33s
method KGAT(2019) 0.1925 1.78s 0.1830 8.73s 0.0499 1.81s 0.2583 0.80s
KGIN(2021) 0.2090 8.21s 0.1969 19.26s 0.0801 10.21s 0.2727 1.48s

MCCLK(2022) 0.2025 8.48s 0.1853 161.48s 0.0607 59.06s 0.2699 5.01s
Self- KGRec(2023) 0.2035 4.47s 0.1960 99.69s 0.1033 21.15s 0.2560 3.10s
Supervised DiffKG(2024) 0.2039 16.87s 0.1846 115.46s 0.0581 60.92s 0.2520 2.58s
method CL-SDKG(2024) 0.2036 52.52s 0.1861 281.2s 0.0924 9.39s 0.2409 1.92S
LightKG(Ours) 0.2120 3.70s 0.2029 19.07s 0.1154 1.58s 0.2929 0.92s

perform worse in sparse scenarios. To further explore the influence
of model complexity, we then design experiments to investigate
whether and how simplifying GNN-based KGRSs, e.g., removing
the attention mechanism employed by six representative KGRSs
(e.g., KGAT [27]), would affect their recommendation accuracy. Sur-
prisingly, the results show that the removal mostly influences little,
while often even increases the accuracy slightly. These observations
suggest that complex mechanisms in GNN-based KGRSs may be
unsuitable for sparse scenarios, potentially leading to overfitting or
poor generalization. This insight inspires us to look for a simpler
yet effective GNN-based KGRS to address the sparsity issue.

To this end, we propose LightKG, a simple yet powerful GNN-
based KGRS, to address the sparsity issue. It includes a simplified
GNN layer to derive node embeddings and an efficient contrastive
layer to implement SSL from the perspective of alleviating the over-
smoothing issue. In the GNN layer, unlike other KGRSs that encode
relations as vectors or transformation matrices, LightKG encodes
them simply as scalar pairs. Then, LightKG employs these scalars
to a linear aggregation framework, which significantly reduces the
model’s complexity. In the contrastive layer, LightKG avoids the
generation and comparison of subgraphs, which is time-consuming
required in previous SSL methods. Instead, LightKG directly mini-
mizes the similarity between nodes on the original graph, which
significantly reduces the training time for SSL.

Equipped with a simpler scalar-based relation encoding strat-
egy, a linear information aggregation framework, and efficient con-
trastive layers, we examine how LightKG performs compared to
the existing KGRSs. We apply LightKG to four benchmark datasets
which vary greatly in sizes and sparsity levels. The experimental
results show that LightKG outperforms 12 State-Of-The-Art (SOTA)
KGRSs of diverse types on these benchmark datasets, not only with
sparse but also with dense interactions. Meanwhile, LightKG shows
high training efficiency compared to other KGRSs with SSL. To
summarize, our contributions are highlighted as follows:

o For the first time, we empirically reveal that simpler GNN-based
KGRSs can perform better with sparse interactions, whereas com-
plex mechanisms like attention in GNNs have minimal impact or
may even degrade the recommendation accuracy.

e We propose LightKG, a simple yet powerful GNN-based KGRS
which incorporates a much simpler relation encoding strategy,
a linear information aggregation framework and efficient con-
trastive layers. These designs allow LightKG to significantly re-
duce training time while enhancing recommendation accuracy,
particularly in sparse scenarios.

e We evaluate LightKG on four benchmark datasets against 12
SOTA KGRSs. The results demonstrate its superiority in both

YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

recommendation accuracy and training efficiency. Particularly, it
surpasses the best baseline by margins ranging from 1.4% to 11.7%
on accuracy, and requires only 16.8% to 82.7% of the training time
compared to SOTA GNN-based KGRSs with SSL.

2 Preliminary

In this section, we will briefly introduce the related concepts, includ-
ing how a GNN-based KGRS generally works and the Collaborative
Knowledge Graph (CKG) [27] it usually employs.

Usually a GNN-based KGRS is trained on a CKG, which consists
of a user-item interaction graph Gy and a KG Gk . For example,
as shown in Fig. 2, Tom buys a book written by Jane, where Tom
is a user, the book is an item, the author Jane is an entity, and the
relation r between Jane and the book is ‘book-author’. Specifically,
let U, 7,V denote the set of users, items and entities respectively.
Gur = {(u,Interact,i)lu € U,i € I}, where Interact is a rela-
tion, meaning an observed interaction between user u and item
i. Gk = {(hr,t)|ht € (I UV),re R}, where R’ denotes the
set of relations in KG (Interact ¢ R’). The user-item graph can be
integrated with a KG as a CKG: G = {(h,r,t)|ht € K,r € R},
where K = (U U T UV), R =R’ U {Interact}.

To train a model, each node and relation will firstly be mapped

to the feature space. Let e,(co) denote the embedding of node k, and
e, denote the embedding of relation r. Let N} denote the set of
neighbors of node k. The node embeddings are randomly initialized.
Then with the involvement of the relations, the model updates the
node embeddings by aggregating information from its neighboring
nodes, performing it iterately for L times as shown in Equ. 1. Finally,
a more accurate node embedding is obtained for RSs, given by,

0 _ (1-1)
e = Z(k.r.t)ENk Agg(e; ’,er),le1,2,..,L 1)

where Agg(-) is a function used for embedding aggregation, which
varies in different models. Embedding e, can be encoded as vectors
or matrices depending on the specific GNN-based KGRS. Together
with the embeddings obtained by the aggregation in the L layers, we

obtain L + 1 embeddings for node k: {e](co), e]il), e](cz), e](CL) }. The
embedding of node k for model prediction, ie., e
using a combination function,

L
Vel e e @

Z can be obtained

e, = Comb(e
Finally, the embeddings e, e;‘ of each user-item pair (u, i) are used
to get the prediction score §; = eZTe;.“. Based on these prediction
scores, all candidate items are ranked in descending order. The
top-ranked items are then selected and recommended to the users.

3 Motivation

In this section, we present a series of exploratory experiments, the
observations of which motivate our proposal for LightKG. We focus
on scenarios where user-item interaction is sparse. First, we evalu-
ate 12 KGRSs at different sparsity levels and observed that while
GNN-based KGRSs always achieve the best performance compared to
other KGRSs in dense scenarios, they fail to do so in sparse scenario.
Then, we analyze the complexity of each GNN model and find that
higher-complexity models tend to perform poorly in sparse scenarios.
To further explore the connection between complexity and perfor-
mance under sparse scenarios, we simplify several SOTA KGRSs
by removing their attention mechanisms. Such removal yields a

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

0.3 T T

0.2

—- CFKG CKE
5 07 1 3 3 ~\\\ = %\ | I?(%% KE%TLS
. : = = =] \
g \ © = ~ € ,al | MCCLK KGRec
g o1l N\ S 01 N g : . —— RippleNet DiffKG
& — =0 & = e CL-SDKG —— MCRec
= === —| 0.1] LightKG
80% 40% 20% 10% 80% 40% 20% 10% 80% 40% 20% 10% 5% 30% 40% 20% 10% 5%
Sampling Ratio Sampling Ratio Sampling Ratio Sampling Ratio
(a) Last.FM (b) Last.FM (c) ML-1M (d) ML-1M

Figure 1: Performance of KGRSs across varying sparsity levels. Similar trends can be noted on other datasets in our study. Due
to space limitations, we only present the results on Last.FM and ML-1M, with the remaining results in the appendix.

Table 2: The best Recall@ 10 achieved by each group of KGRSs
at different sparsity levels on the Last.FM. Bold values high-
light the top performance for each sparsity level. The "Im-
prove" shows the relative improvement of LightKG over the
best GNN-based KGRSs.

Model 80% 40% 20% 10%
Pathpax 0.2132 0.1243 0.0935 0.0825
Embedding,,qx 0.2453 0.1797 0.1082 0.0983
GNN pax 0.2727 0.1802 0.0876 0.0425
LightKG 0.2929 0.2120 0.1012 0.0861
Improve 8.52% 17.66% 15.49% 102.40%

surprising result: the attention mechanisms in these models seem not
only ineffective but also potentially detrimental.

3.1 Impact of Interaction Sparsity

We evaluate 12 recent and representative KGRSs on Last.FM and
ML-1M datasets (detailed statistics are provided in Tab. 5), using
Recall@10 and MRR@10 as evaluation metrics. To simulate vary-
ing degrees of sparse interactions, we build datasets with varying
sparsity levels by adjusting the sampling ratio of the full datasets.
Sampling ratios are set according to the original density levels of
each dataset, with 10% and 5% representing sparse scenarios, and
80%, in comparison, serves as relatively dense scenario. Hyperpa-
rameters are tuned for all models across varying sparsity levels,
including the number of GNN layers, learning rates, negative sam-
pling ratio, and other key parameters.

Fig. 1 presents the experimental results, with the x-axis repre-
senting sampling ratio (e.g., 40% means 40% of the full dataset is
sampled for training). To systematically evaluate the performance of
KGRSs in sparse scenarios, we categorized them into three groups
based on their frameworks [9]: path-based (MCRec, RippleNet),
embedding-based (CFKG, CKE), and GNN-based (KGCN, KGNNLS,
KGAT, KGIN, MCCLK, KGRec, DiffKG, CL-SDKG). Tab. 2 summa-
rizes the highest Recall achieved by each group at different sparsity
levels on the Last.FM dataset. For example, "Pathy; 45 in 40%" repre-
sents the highest Recall achieved by path-based KGRSs (RippleNet,
MCRec) at a 40% sampling ratio.

The results reveal several key observations. First, as expected,
the accuracy of all KGRSs declines with increasing data sparsity
as shown in Fig. 1 and Tab. 2. Second, while GNN-based KGRSs
demonstrate superior performance in dense scenarios (sampling ra-
tios of 80% and 40%), their performance degrades more significantly
in sparse scenarios (sampling ratios of 20% and 10%) even with SSL,
as shown in Tab. 2. Notably, attempts to mitigate this degradation
through expanded GNN receptive fields prove ineffective. In fact,

Table 3: Complexity analysis and Recall@ 10 on Last.FM (sam-
pling Ratio: 10%) and ML-1M (sampling Ratio: 5%). Correla-
tion refers to the Pearson correlation coefficient between
complexity ranking and Recall.

Model Time Complexity (ranked from low to high) LastFM ML-1IM
KGCN(2019) Od(|Gka|+ R x |U|+|1])) 0.0425 0.0575
KGNNLS(2019) 0d(|Gra|+|VI|+|U| x|R])) 0.0378 0.0542
KGIN(2021) 0(d|Gka| +d?*|Gurl) 0.0289 0.0557
KGRec(2023) O(d%|Gka| +d|Guil) 00291 0.0398
DiffKG(2024) O(d?|Gke| +d|Gurl) 0.0177 0.0357
CL-SDKG(2024) 0(d*(|Gkc| +|U|) +d|Gurl) 0.0204 0.0445
KGAT(2019) O(d*(|GkG| +|Gurl + U+ |T|+|V])) 0.0202 0.0311
MCCLK(2022) O(d®|Gka| +d|Guil) 00149 0.0475
Correlation -0.9374 -0.6682

introducing additional GNN layers often brings in noise, which out-
weighs the potential benefits of additional information [42]. Lastly,
Fig. 1 reveals that simpler models like KGCN and KGNN-LS fre-
quently outperform more complex counterparts such as KGAT and
MCCIK in sparse scenarios. This indicates a notable correlation
between model complexity and accuracy in sparse scenarios, which
will be further explored in the following subsections.

3.2 Impact of Model Complexity

Due to the significant differences in frameworks among various
types of KGRSs, comparing their complexities is challenging. There-
fore, we focus on GNN-based KGRSs, which is the most widely
adopted framework [10]. We analyze the time complexity of a sin-
gle GNN layer, as it serves as a fundamental building block for
most GNN-based KGRSs. Let d denote the embedding size, while
|Gurl and |Gk | represent the number of triplets in the user-item
interaction graph and KG, respectively.

Tab. 3 ranks KGRSs by their time complexity and reports their
Recall@10 on Last.FM (sampling ratio: 10%) and ML-1M (sampling
ratio: 5%). The correlation shows the Pearson correlation coefficient
between complexity ranking and Recall@10, with negative values
indicating an inverse relationship. The results reveal the following
observations. (1) Impact of Complexity in Sparse Scenarios:
Models with higher complexity generally perform worse in sparse
scenarios. This is supported by the strongly negative Pearson cor-
relation between model complexity and Recall in sparse scenarios
(e.g., -0.9374 on Last.FM and -0.6682 on ML-1M). (2) Effectiveness
of SSL: SSL helps mitigate the issue of insufficient training data in
sparse scenarios by extracting more supervisory signals. This can
be supported by the fact that although KGRec is more complex than
KGIN, its SSL training mechanism leads to superior performance
on Last.FM compared to KGIN.

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 4: The Recall@10 after removing the attention mech-
anism on Last.FM. "Average" and "Average,_" represent the
average Recall of the six SOTA KGRSs with and without at-
tention mechanisms, respectively, while "Improve" indicates
the latter’s improvement over the former.

Model 80% 40% 20% 10%
KGAT 0.2583 0.1423 0.0677 0.0202
KGAT,- 0.2690 0.1466 0.0667 0.0228
KGIN 0.2727 0.1711 0.0770 0.0289
KGIN,- 0.2718 0.1718 0.0796 0.0307
KGRec 0.2560 0.1758 0.0876 0.0291
KGRecq- 0.2573 0.1740 0.0872 0.0291
MCCLK 0.2699 0.1758 0.0555 0.0149
MCCLK,- 0.2698 0.1792 0.0557 0.0152
DiffKG 0.2520 0.1551 0.0479 0.0177
DiffKG,— 0.2564 0.1599 0.0488 0.0214
CL-SDKG 0.2409 0.1591 0.0431 0.0203
CL-SDKG- 0.2424 0.1571 0.0450 0.0204
Average 0.2583 0.1632 0.0631 0.0219
Averageq— 0.2611 0.1648 0.0638 0.0233
Improve +1.09% +0.97% +1.10% +6.05%

3.3 Impact of Removing Attention Mechanisms

Tab. 3 shows that complex models may sometimes underperform
simpler models in sparse scenarios. To further explore this issue, a
natural approach is to examine whether and how making models
simpler, e.g., removing their attention mechanisms, would influence
recommendation accuracy.! Specifically, We implement it by fixing
attention weights to 1 in six SOTA KGRSs and conduct the same
experiment as in Section 3.1. Notably, this removal is rather simple
and can lead to substantial disruption of the model’s structure. For
example, the original structure of KGAT is as follows:

a(h,r,t) = (Wre,)Ttanh((Wreh+e,)), 3)

exp(a(h,r,t))
Z(nr teny, explalhr 1))’

o _ (1-1)
e, = Z(h,r,t)ENh m(hr.t)e, 7, (5)

where W, € R9%9 ig the transformation matrix of relation r. The
removal of attention impairs KGAT’s ability to account for the
influence of different relations, simplifying its GNN structure as:

o _ (1-1)
€h _Z(h,r,t)eNh e - ©)

The results are presented in Tab. 4. The subscript 4 (e.g., KGAT,-)
denotes the altered model (of KGAT) with the attention mechanism
removed. Due to space limitation, we only present the Recall@10
results for Last.FM, as similar conclusions are observed across other
datasets in appendix. Surprisingly, despite the simplicity of the
removal method, we observed that: (1) in most cases, removing the
attention mechanism slightly improves recommendation accuracy;
and (2) as the data sparsity level increases, the improvement becomes
more pronounced. These observations strongly support simpler mod-
els are more suited for sparse scenarios.

Intuitively, complex models often require substantial train-
ing data to effectively learn their parameters and achieve op-
timal performance. In sparse scenarios, they often underfit

a(hr,t) =

©

!A unified ablation study is challenging due to the structural and functional diversity
of these models, and our focus is solely on verifying the influence of simpler models.

YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

or generalize poorly. Therefore, simpler models are better
suited to address the challenges posed by sparse scenarios.

4 LightKG

Our previous experimental explorations inspire us to design a sim-
pler yet effective KGRS, LightKG. Fig. 2 displays its workflow. First,
it employs a simplified GNN layer, with scalar-based relation en-
coding and linear aggregation framework, for aggregating neighbor
information. Second, to shorten the training time for SSL, it employs
an efficient contrastive layer that directly minimizes the similarity
between nodes of the same type, eliminating the need for gener-
ating and comparing subgraphs—a common yet computationally
expensive approach adopted by previous SSL methods. Finally, it
derives matching scores for the recommendation task.

4.1 Simplified GNN Layer

We propose a simplified GNN layer, which serves to derive node
representations in the CKGs. The existing models such as KGRec,
MCCLK, and KGAT encode relations as vectors or matrices, which
are then incorporated into mechanisms such as attention and multi-
graph learning. To simplify the process of GNNs, we encode rela-
tions of the same type as scalar pairs, significantly reducing com-
plexity while retaining essential information. For example, consider
the triplet (book1, book-author, Jane). LightKG will encode the
relation "book-author" as a pair of learned scalars to denote the im-
portance of authors to books ("write") and books to authors (" written
by"), respectively. These scalars, similar to embeddings, are learned
through backpropagation after initialization. Although this may
seem simplistic in capturing the semantic information in the CKGs,
our subsequent experiments prove its effectiveness (refer to Tab. 7).
Inspired by the success of Light GCN [7], we propose a simple and
linear GNN framework tailored for CKGs by leveraging scalar-based
relations and excluding non-linear activation function. Specifically,
for a node k, we use Equ. 7 to update its embedding e]il) in the [-th
GNN layer,
1 Orex -1
& = Disrnen, Wei g @
where ay,, denotes scalar-based relation from node ¢ to k. Note
that ay,, # ar,,. For each node of user (u) and item (i) in CKG,
their final embeddings, which are used for model prediction, are
generated by combining the outputs from each GNN layer:
L1 L1
€= D T G = D T ®
By employing a simple and linear neighbor-information aggre-
gation framework with scalar-based relation encoding, LightKG
greatly simplifies the existing GNN-KGRSs, thereby reducing the
learning difficulty especially in sparse scenarios.

4.2 Efficient Contrastive Layer

Contrastive learning, as a form of SSL, can alleviate the issue of
insufficient supervised training data in sparse scenarios [36]. The
recent advances in contrastive learning show that SSL is effective
as it enhances the distinction between node embeddings [43]. Such
distinction can help alleviate the over-smoothing issue [37], a phe-
nomenon where node embeddings in GNNs become indistinguish-
able due to excessive aggregation of neighborhood information.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

User-Item Interaction Grapha 3 User Embedding Item Embedding ! User Embedding Space
" [Tom Lucy) : Entity Embedding @ Scalar-based Relation |]
) @ Vector Addition ® Vector Inner Product =T
| © € © }
Interact | € £ £ solve /4
| <:| Item Embedding Space L,
i GNN]
i —>
Relation | Author*” Pnce\ T|IIe~ : E> = — -
———————— ‘ L N : Over-Smoothing Issue /\ Efficient Contrastive Layer
Jane L;
[~ I
Q=
LN TSslJob
Friend ™, “Sea. E
E i)Bu
Nancy Doctor %1 Pui
& m—{
L 17 Predict
\\ *ee
\
Y & é Combine Leotar
Knowledge Graph \

Collaborative Knowledge Graph

Simplified GNN Layers

Traning for Recommendation

Figure 2: Illustration of our proposed LightKG.

However, existing contrastive learning methods, such as those used
in MCCLK and KGRec, are time-consuming since they need to
generate subgraphs and make comparisons between them.

To address it, we aim to simplify the contrastive learning with
a specific focus on the over-smoothing issue. Inspired by [26], we
propose to gain more distinctive node embeddings by directly min-
imizing similarities between embeddings of different nodes. Empir-
ically, we find this works best when applied separately to nodes of
the same type, such as between users or between items, as follows,

. B 0T (©
min £y, = Zul‘uz cu eXp(eu1 5))

min £; = Zi her exp(e(o)T (0))
(0) ,(0) (0) (0)

where ey, s ey, - €; i
dings at layer 0. We empirically find that adding the contrastive
layer at layer 0 yields the best performance, as it enables the model
to learn discriminative features from the outset, making deeper
layer representations naturally distinct.

However, Equ. 9 and Equ. 10 ignore two key factors. First, they
overlook the inherent similarity that exists between nodes. For
two users who have highly overlapping interaction records, their
embeddings should not be excessively differentiated. Second, over-
smoothing impacts nodes unevenly, as those with more neighbors
are more susceptible to losing their unique characteristics in GNNs.
Thus, it is crucial to consider the number of neighbors. By incorpo-
rating these factors, we refine Equ. 9 and Equ. 10 as follows:
0)T (0))

(10)

and e; ~ are normalized user and item embed-

(11)

min £, = Zul,uze'u Wuq,uy exp((1 - Suq,uy)eu1

07 ¢0)), (12)

min £L; = Zil,izef Wiy iy exp((1 = sip, ,Z)e
Niﬂ/\/j

VINiIIN;]

reflects the impact of neighbor counts. By optimizing

where s;; = denotes the similarity, and w;; = 1 -

1

VIN:IING

Equ. 11 and Equ. 12, we effectively and efficiently address the over-
smoothing issue. Unlike prior works, we avoids the computationally
expensive task of generating and comparing subgraphs. Conse-
quently, our method not only enhances recommendation accuracy
(see Fig. 3) but also greatly shortens the training time (see Tab. 1).

4.3 Model Prediction and Loss Function

The embeddings obtained from the GNN layer can be used to derive
matching scores between users and items using fy; = e}’
the recommendation task, we choose the BPR loss [16]. It optimizes
the personal ranking of items for each user by maximizing the
probability that he/she prefers a positively interacted item g,,; over
a randomly chosen non-interacted one ;.

e;.k. For

Lppr = ZisNu,ejNu —Ino (Gui = Guj), (13)

where o is the sigmoid function. Together with our objectives for
the contrastive layer, we obtain the following objective function:

Liotar = Lopr + PuLu + pi Li + A|O]IZ, (14)

where © represents the model parameter set; f, and f; are two
hyperparameters that determine the respective strengths of £, and
L;; and A is the regularization coefficient.

4.4 Model Analysis

In this section, we analyze the complexity of LightKG, showing that
its time complexity is lower than that of all existing GNN-based
KGRSs. Therefore, LightKG is a simpler yet effective model, capable
of achieving robust learning even in sparse scenarios. We further
demonstrate that LightKG can be seen as an extension of LightGCN,
which means that LightKG inherits LightGCN’s efficient capability
to extract information from interaction data. Finally, we discuss the
encoding of relations as scalar pairs, which can be interpreted as
node labels, enabling the model to distinguish different node types
during representation learning.

4.4.1 Complexity Analysis. By encoding relations as scalar pairs
and incorporating a linear aggregation framework, LightKG achieves
a time complexity of O(d(|Gui| + |Gkcl)), which is significantly
lower than that of existing GNN-based KGRSs. This reduced com-
plexity not only improves computational efficiency but also ef-
fectively addresses learning challenges in sparse scenarios. The
simplicity of LightKG’s architecture allows it to learn effectively
from limited training data, making it particularly well suited for

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

sparse scenarios, where traditional GNN-based KGRSs often strug-
gle due to their complexity and high data demands. Moreover, in
dense scenarios, LightKG retains the strengths of GNN, leverag-
ing rich interaction data to deliver stronger performance. Thus,
LightKG is adaptable and effective for both sparse (see Tab. 2) and
dense (see Tab. 6) recommendation scenarios.

4.4.2 Relationship with LightGCN. For a better comparison, here
we consider only the interaction graphs, as LightGCN cannot be
applied to KG directly. We use A € RIUIXIT to denote the inter-
action matrix, where A, ;) = 1 means an observed interaction
between user u and item i. Based on this, the matrix form of GNN
in LightGCN can be denoted as follows:

110

’:) DY, (15)
where D € RUUHIZDX(1U+TT) i a diagonal matrix. For LightKG,
we use a pair of scalars a;, and «; to denote the relation encoding
between users and items. Then, the matrix form of GNN in LightKG

can be denoted as follows:

ED =D % (a QAT m-gA) D 3 EU-D, (16)
ut
ED =p2 (AOT g) D 2E(-D
17
_1 0 (i = 1A\ -1 11y (a7
+D7Z (AT 0 D 2EY"V.

Since ajy, and ay; are learnable, LightKG becomes equivalent to
LightGCN when ajy, = ay; = 1. Therefore, LightKG can be viewed
as an extension of LightGCN, inheriting its ability to efficiently
extract information from interaction graph. This is particularly
important, as many items, especially new ones, may not link to
KGs. Our subsequent experiments (Tab. 7) reveal that many KGRSs
fail to outperform LightGCN when KGs are removed. In contrast,
LightKG achieves superior accuracy both with and without KGs.

4.4.3 Scalar-based Relations as Node Labels. In LightKG, the rela-
tions are encoded as scalar pairs such as a;, and a,;, which can be
interpreted as implicit labels for different node types. To clarify this
concept clearly, we focus on interaction graphs for simplicity and
without loss of generality. Considering an extreme scenario where
all node embeddings (e) are identical, and each node has the same
number of neighbors (| NV|). In traditional models like Light GCN and
KGAT, this uniformity leads to identical aggregation coefficients.
As a consequence, all nodes converge to identical embeddings after
GNN propagation, thereby losing the distinction between different
node types such as users and items. In contrast, LightKG leverages
scalar weights to differentiate node types. Taking one layer of the
GNN as an example, the updated embeddings of user (u) and item
(i) are computed as follows:

) _ Qiu (I-1) _ Ciu
e, = ig;u mmei =N° (18)
) _ Aui (I-1) _ Qui
8 2 T A
The distinction between «;j;, and «y,; ensures that the user and item
embeddings diverge after the propagation of GNN. These scalars
act as implicit labels. For example, @y, is the label of user nodes, as

it only appears in the expression of e,,.
Our subsequent experiments (Fig. 4) reveal that the optimal val-
ues of B, and f; (refer to Equ. 14) may differ significantly, suggesting

(19

YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Table 5: Statistics of the datasets.

User-Item Graph Knowledge Graph

Statistics . . . - ; .
users items interactions entities relations triplets

Amazon-book (AMZ-B) |20,347 4,230 234,323 12,230 21 46,522
MovieLens-1M (ML-1M) | 6,039 3,499 573,637 77,799 51 378,151
Book-Crossing (BX) 11,018 9,059 24,644 77,904 27 151,500
Last.FM 1,873 3,847 21,173 9,367 62 15,518

that the embeddings of users and items follow distinct distributions.
As proven in [2], labeling different node types enable the model to
effectively account for the unique characteristics of each node type,
thereby improving its capacity to capture patterns specific to users
and items during the representation learning process.

5 Experiments

We conduct extensive experiments to demonstrate the effectiveness
and efficency of our proposed LightKG. We aim to answer the
following four research questions:

e RQ1: How does LightKG perform compared to the SOTA KGRSs,
in terms of both the recommendation accuracy and the training
efficiency in dense scenarios?

e RQ2: How does LightKG perform in sparse scenarios compared
to the SOTA KGRSs?

e RQ3: With its simplified relation encodings and aggregation
framework, does LightKG effectively utilize KGs in recommen-
dation compared to the SOTA KGRSs?

e RQ4: How does the contrastive layer contribute to the overall
performance of our proposed LightKG?

5.1 Experimental Settings

5.1.1 Datasets and Evaluation Protocol. We select four benchmark
datasets: Last.FM2, Amazon-Book® (AMZ-B), Book-Crossing? (BX),
and MovieLens-1M> (ML-1M). Following SOTA methods [13], we
preprocess ML-1M and AMZ-B by retaining interactions with rat-
ings of at least 4. For AMZ-B, we further apply a 20-core setting,
ensuring that both users and items have a minimum of 20 interac-
tions. For Last.FM and BX, we use the versions released in [22, 25]
without additional modifications. Tab. 5 presents the statistical de-
tails of the datasets. For evaluation, we use the full-rank approach
to generate top-10 recommendations. To evaluate the recommen-
dation accuracy, we adopt widely used metrics, Recall@10 and
MRR@10, following [39].

5.1.2 Baselines. We compare our proposed LightKG with 13 SOTA
baselines, including KG-free RS (LightGCN [7]), embedding-based
KGRSs (CFKG [40], CKE [38]), path-based KGRSs (RippleNet [22],
MCRec [8]), supervised GNN-based KGRSs (KGCN [25], KGNN-
LS [23], KGAT [27], KGIN [29]) and self-supervised GNN-based
KGRSs (MCCLK [43], KGRec [35], DiffKG [9], CL-SDKG [17]).

5.1.3 Implementation Details. All experiments are conducted on
Ubuntu 18.04 with an Intel(R) Xeon(R) Gold 6226R CPU running at
2.90GHz, 64GB of memory, and 8 NVIDIA GeForce GTX 3090 GPU.
To reduce randomness, all experiments are repeated five times. To
ensure the rigor of the experiments, we implement LightKG and

Zhttps://grouplens.org/datasets/hetrec-2011/
Shttps://jmcauley.ucsd.edu/data/amazon/
*http://www2.informatik.uni-freiburg.de/ cziegler/BX/
Shttps://grouplens.org/datasets/movielens/1m/

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture

Table 6: The results of Recall@ 10 and MRR@ 10 of all meth-
ods on the four benchmark datasets. * denotes statistically
significant different by the paired t-test with p — value < 0.01.

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Table 7: Recall@10 on KG exploitation experiment. Bold
values indicate the best Recall and improvement among all
models and the underlined values indicate the second-best.

AMZ-B ML-1M BX Last.FM
Recall MRR Recall MRR Recall MRR Recall MRR

Model

LightGCN 0.1980 0.1052 0.1855 0.3453 0.0468 0.0198 0.2695 0.1204
CFKG 0.1968 0.0987 0.1862 0.3405 0.0802 0.0384 0.2444 0.1100
CKE 0.1979 0.1037 0.1848 0.3457 0.0313 0.0152 0.2453 0.1069
RippleNet 0.1561 0.0838 0.1590 0.3062 0.0445 0.0194 0.1633 0.0656
MCRec 0.1524 0.0791 0.1610 0.3233 0.0512 0.0241 0.2132 0.0941
KGCN 0.1550 0.0738 0.1594 0.3456 0.0867 0.0433 0.2149 0.0924
KGNN-LS 0.1508 0.0750 0.1592 0.3051 0.0731 0.0371 0.2117 0.0891
KGAT 0.1925 0.0997 0.1830 0.3412 0.0499 0.0233 0.2583 0.1152
KGIN 0.2090 0.1099 0.1969 0.3551 0.0801 0.0399 0.2727 0.1242
MCCLK 0.2025 0.1065 0.1853 0.3474 0.0607 0.0359 0.2699 0.1228
KGRec 0.2035 0.1094 0.1960 0.3570 0.1033 0.0540 0.2560 0.1118
DiffKG 0.2039 0.1116 0.1846 0.3428 0.0581 0.0318 0.2520 0.1192
CL-SDKG 0.2036 0.1134 0.1861 0.3428 0.0924 0.0532 0.2409 0.1054

LightKG 0.2120* 0.1173* 0.2029* 0.3785" 0.1154* 0.0515" 0.2929* 0.1350*

all the baselines in RecBole [41], which is a unified, comprehensive
and efficient recommendation library. We set the "stopping-step”
parameter in Recbole to 20, which means that the model will stop
training if no improvement is observed on the validation set for 20
consecutive epochs. The datasets are split into training, validation,
and testing sets using a ratio of 8:1:1. For a fair comparison, the em-
bedding size of all the models is fixed to 64 and the Adam optimizer
is used for optimization with a fixed batch size of 2048. We use
Bayesian Optimization [19] for hyperparameter tuning and each
model is optimized 30 trails per dataset. All parameters including
scalar-based relations are initialized by Xavier uniform. Specifically,
we search learning rate in {0.01,0.005, 0.001, 0.0005,0.0001}, the
GNN layers in {1, 2, 3, 4} for all GNN-based KGRSs and the number
of negative samples for training in {1, 2, 5, 10}. For 8, and f; (refer
to Equ. 14), we tune them in {10_4, 107,107,107, 1078, 10_9}.

5.2 Experimental Results and Analysis

5.2.1 Result of RQ1. We evaluate both the recommendation accu-
racy and efficiency of LightKG in dense scenario (sampling ratio:
80%). The results are presented in Tab. 6, where the bolded numbers
represent the best results and the underlined numbers indicate the
second-best. We can draw the following conclusions.

First, while LightKG is specifically designed for sparse scenar-
ios, it also demonstrates outstanding performance in dense scenarios.
LightKG performs exceptionally well across all benchmark datasets,
achieving the highest Recall/MRR on Last.FM, AMZ-B and ML-1M,
with improvements ranging from 1.42% to 10.5%. For BX, it obtains
the highest Recall while ranking third in MRR, closely following
KGRec and CL-SDKG by a narrow margin. These results highlight
the strong generalizability of our simplified GNN framework.

Second, some KGRSs, like KGAT, perform worse than Light GCN
which does not utilize KGs, highlighting their limitations in effectively
using KGs or uncovering valuable insights from interaction graphs.
Similar phenomenons are observed in [36]. Note that Light GCN
outperforms KGAT on AMZ-B, Last. FM and MI-1M. It aligns with
the slight improvement we observed after removing the attention
mechanism from KGAT (as shown in Tab. 4), as KGAT becomes
more similar to LightGCN once its attention mechanism is removed.

Third, no single baseline model consistently outperforms the others
across the four datasets. Self-supervised methods (e.g., MCCLK and

Last.FM BX
KG w/oKG Improve KG w/oKG Improve
LightGCN - 0.2695 - - 0.0468 -

CFKG 0.2444 0.2389 2.29% 0.0802 0.0579 38.51%
KGAT 0.2583 0.2640 -2.17% 0.0499 0.0267 86.89%
KGIN 0.2727 0.2588 5.37% 0.0801 0.0345 132.12%
MCCLK 0.2699 0.2608 3.49% 0.0607 0.0306 98.30%
KGRec 0.2560 0.2571 -0.43% 0.1033 0.0487 112.07%
DiffKG 0.2520 0.2517 0.12% 0.0581 0.0210 176.67%
SDKG 0.2327 0.2323 0.17% 0.0924 0.0462 99.87%

LightKG 0.2929 0.2725 7.49% 0.1154 0.0654 76.48%

KGRec) do not always surpass supervised methods (e.g., KGIN).
This may stem from the limitations of random graph augmentation
or overly simplistic, handcrafted cross-view pairing, which may
fail to capture meaningful KG information.

Lastly, we compare the training efficiency, i.e., time consumed
per training epoch, between LightKG and other GNN-based KGRSs,
as shown in Tab. 1. The results indicate that LightKG achieves a
substantially shorter training time than other self- supervised models,
highlighting the efficiency of our designed contrastive layer. Although
models like KGCN, KGNN-LS and KGAT achieve better training
efficiency than LightKG due to the absence of SSL methods, they
fail to obtain accurate recommendation.

5.2.2 Results of RQ2. We now investigate the performance of
LightKG across different sparsity levels. Following the experimen-
tal setup in Section 4.1, we employ random sampling to generate
datasets of varying sizes, representing scenarios with different spar-
sity levels. The specific sampling ratios used are {80%, 40%, 20%, 10%}
on Last.FM and {80%, 40%, 20%, 10%, 5%} on ML-1M, with each value
denoting the proportion of interaction records allocated to the train-
ing set. The results are presented in Tab. 2 and Fig. 1.

First, when interaction records are sparse, LightKG outperforms
all other GNN-based KGRSs. As sparsity level increases, LightKG’s
advantage over other GNN-based KGRSs becomes more evident,
ranging from 8.52% to 102.4% on Last.FM. This supports our hy-
pothesis that overly complex structures for capturing full KG se-
mantics are not always beneficial and can hinder learning in sparse
scenarios. Second, despite outperforming other GNN-based KGRSs,
LightKG falls behind CFKG, which is an embedding-based KGRS.
We attribute this to the lower complexity of CFKG, which is only
O(dxbatch_size), making it even simpler than LightKG. Compared
to CFKG, LightKG exhibits a clear advantage (with an improvement
of 20.1% on average) in dense scenarios and falls slightly behind
(with a drop of 1.39% on average) in sparse scenarios. Therefore,
considering performance across both sparse and dense scenarios,
LightKG shows optimal overall effectiveness.

5.2.3 Results of RQ3. To check whether LightKG can capture the
semantic information in KG with scalar-based relations, we remove
the KG (denoted as w/o KG) and compare the performance before
and after the removal, following the setting of [39]. We select several
recently released or well-performing SOTA models for comparison.

The results are illustrated in Tab. 7. Notably, the "Improve" here
ignores marginal effects of performance improvements. For exam-
ple, a 50% increase from 60 to 90 is much harder than from 10 to

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

00 LightkG
S . 0.3
® o ,‘:‘@ In LightKG,,
= [
S g 00 LightkG
I~ = g wio i

0.1 0.1 .
0 OLightkG,,,,

LastFM BX ML-IM AMZ-B LastFM BX ML-IM AMZ-B

Figure 3: The impacts of contrastive layer.

15. (1) With the integration of the KG, LightKG shows a significant
improvement in Recall, indicating its effective utilization of the KG to
improve recommendation accuracy. This demonstrates that, despite
the seemingly simplistic approach of encoding relations as scalar
pairs, it effectively captures the semantic information of the KG
while reducing model complexity. (2) Many models perform worse
than LightGCN when completely deprived of KG, indicating their lim-
ited ability to extract meaningful information solely from interaction
graphs. As demonstrated previously, LightKG, as an extension of
LightGCN, can effectively extract meaningful information from in-
teraction graphs. Therefore, LightKG maintains high accuracy even
with a reduced or absent KG, which demonstrates its robustness and
adaptability in various scenarios. (3) In certain scenarios, the removal
of KGs leads to improved accuracy for some models. For example, re-
moving KG from KGAT and KGRec improves accuracy on Last.FM.
This suggests that some overly complex framework may backfire,
failing to effectively leverage KGs. The same phenomenons have
also been observed in [39].

5.24 Results of RQ4. We aim to evaluate the effectiveness of con-
trastive layers by conducting ablation experiments with three vari-
ants of LightKG.

¢ LightKG,, ,: This variant eliminates the contrastive layer for
users by setting £, = 0.

e LightKG,,, ;: This variant eliminates the contrastive layer for
items by setting f; = 0.

e LightKG,,, ,;: This variant eliminates contrastive layers for

both users and items by setting S, = i = 0.

The results in Fig. 3 lead to the following observations. (1) Com-
paring LightKG and LightKG,,, ,i, we observe a notable drop in per-
formance for LightKG.,,/, ,,; after the removal of the contrastive layers.
This highlights the critical role and effectiveness of contrastive
layers, emphasizing their importance in enhancing the overall per-
formance of LightKG. (2) A single contrastive layer (either user-side
or item-side) can achieve performance comparable to the complete
framework. For example, LightKGy/, u, LightKGy/o ; and LightKG
achieve similar performance on Last.FM and BX. This phenomenon
occurs because the CKG connects users and items through a unified
graph structure. When the contrastive layer is applied to one side
(e.g., users or items), the impact naturally spreads to the other side.

To further explore the impact of contrastive layer parameters, we
fixed the parameter f,, and f; separately on Last.FM, BX, ML-1M
and AMZ-B, while varying the range of the other parameter. The re-
sults are presented in Fig. 4. It can be observed that: (1) Both f,, and
Bi have an optimal value, and deviating from these values—either
higher or lower—leads to a degradation of model performance. (2)
The optimal values of f5,, and f; can differ significantly. For example,
on the ML-1M, the optimal S, is 10~>, while the optimal f; is 1077.

YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

0.12

Recall@10
Recall@10
e

- o 3
=] !
® ® i
= = 3
153 o 0
3] 5} | !
~ ~ ! |
J 0.2 ! !
! | P Bu=Bi
4 % 4 / 7/ 4 il /7 2 4 7
NN RN RN N NN BN NN
ML-1M AMZ-B

Figure 4: The impacts of f, and f;.

This indicates that the distributions of different node types may
vary considerably, further validating the rationale behind LightKG’s
node labeling, as demonstrated earlier.

5.3 Further Exploration of LightKG

5.3.1 Semantic Modeling Capabilities. Since LightKG represents
relations as scalar values, its ability to capture semantic information
may be limited. To evaluate this issue, we calculate the variance
of aggregation coefficients during GNN propagation - a higher
variance suggests better discrimination between different relations.
For LightKG, these coefficients are computed via Eq. 7, whereas
other models derive them from attention weights. As shown in
Tab. 8, LightKG consistently achieves the highest variance across
all datasets, demonstrating its superior capability to capture global
semantic patterns despite its simple scalar-based approach.

Table 8: The variance of aggregation coefficients during GNN.

LastFM ML-1IM BX AMZ-B

KGAT 0.0670 0.0492 0.2248 0.0368
KGRec 0.1273 0.0672 0.3874 0.0514
CL-SDKG 0.1147 0.0694 0.3991 0.0446
KGIN 0.1204 0.0727 0.3433 0.0371

LightKG 0.5500 0.0967 0.4728 0.0932

While LightKG’s scalar-based relation encoding offers computa-
tional efficiency, it exhibits limited capability to discern fine-grained
relational nuances in complex scenarios. For instance, in the ML-
1M dataset, the node “Titanic” is linked to 51 other movies via the
“film-actor-film” relation. LightKG assigns nearly identical aggre-
gation weights (variance = 0.0009) to these edges, whereas KGAT
(variance = 0.0174) demonstrates stronger discriminative power.
This limitation is supported by LightKG’s suboptimal performance
on the MRR metric in the BX dataset. Since MRR relies on the pre-
cise ranking position of positive samples, it demands fine-grained
discrimination among items with subtle semantic differences—a
task inherently more challenging than achieving high Recall.

In summary, LightKG’s simple design excels at capturing global
semantic information, but this comes at the cost of reduced preci-
sion in distinguishing subtle relational details.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture

Table 9: The scalar values of top-5 relation from each dataset.
For clarity and conciseness, the names of relations have been
approximately substituted.

Last.FM ML-1M BX AMZ-B
1 UI(3) 1U((122) U-1(3.2) U-1(9.9)
2 I[U(5.2) U-1(7.6) 1-U (2.7) 1-U (9.4)
3 artist (4.4) type (6.4) type (1.2) char (8.8)
4 born(3.5) outfit (6.4) written (0.9) written (8.8)
5 act (2.6) act (5.9) series (0.3) write (7.7)

5.3.2 The impact of scalar-based relation. In LightKG, scalar values
quantitatively measure the relative importance of different relation-
ship types for recommendation tasks. To validate this design, we
identify the top-5 most influential relations per dataset based on
their scalar weights. The results are shown in Tab. 9, where the
values in parentheses represent the learned relation scalars.

It can be observed that user-item and item-user interactions
("U-I/I-U") achieve the highest scalar values across all datasets, indi-
cating that direct user-item interactions provide the most influential
recommendation signals. These results demonstrate that direct user-
item interactions consistently outweigh other relational signals in
recommender systems. This empirical evidence aligns with and
strengthens the arguments presented in [39], which critically ex-
amines the actual effectiveness of knowledge graph augmentation
in recommender systems.

6 Related Work

6.1 Knowledge-aware Recommender Systems

Existing KGRSs can be roughly categorized into three types [9].

Embedding-based KGRSs [5, 11, 24, 38, 40] use the distances
and directions in the embedding space to represent relationships
between nodes. For example, CKE [38] uses TransR to enhance
recommendation accuracy by capturing structured semantic rela-
tionships between items in the KGs; CFKG [40] adopts TransE to
model user-item interactions, integrating KG to enhance recom-
mendation accuracy and explainability; and KG4Vis [11] adapts
TransE to model KG relations specifically for automated visualiza-
tion recommender systems.

Path-based KGRSs [1, 4, 8, 15] use methods like random walks
to explore item connections in KGs. For example, RippleNet [22]
uncovers latent user-item associations through "ripple propagation”.
MCRec [8] significantly enhances both recommendation accuracy
and diversity by effectively leveraging meta-path contexts, while
PGPR [1] employs reinforcement learning to optimize the quality
of reasoning paths.

GNN-based KGRSs are based on the information aggregation
mechanism of GNNs and can be divided into supervised meth-
ods [23, 25, 29] and self-supervised methods [9, 17, 34-36, 43].
Regarding supervised methods, KGCN [25] and KGNN-LS [23] uti-
lize GCN to aggregate neighborhood information of items in KGs.
Then, KGAT [27] integrates user-item interactions and KGs, using
graph attention to improve recommendations. Inspired by the suc-
cess of self-supervised learning, contrastive learning, as a form of
self-supervised learning, has been increasingly integrated into GNN-
based methods. For example, MCCLK [43] aligns knowledge and
interaction graphs via cross-view contrastive learning. KGCL [36]
reduces data noise through graph contrastive learning [9, 17].

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

6.2 Sparsity Issue in Recommender Systems

Sparse scenarios arise from limited user-item interaction data, lead-
ing to challenges in providing accurate recommendations [18]. Fail-
ure to address it will lead to user attrition and significant economic
lossess. To tackle this issue, various data augmentation approaches
have been proposed. Auxiliary information, such as KGs [43] and
social networks [33], has been integrated into RSs to enrich the data
available for users or items with sparse interactions. Togashi, et al.
[21] employ an enhanced negative sampling method to mitigate the
popularity bias in sparse scenarios. Moreover, incorporating self-
supervised learning techniques into RSs has emerged as a promising
trend, which addresses the data sparsity issue by extracting addi-
tional supervisory signals from raw data [35, 36, 43]. However, none
of these methods have explored what kind of framework is suitable
for sparse scenarios.

6.3 Simplifying GNN for Different Tasks

Several studies [6, 12] have shown that not all components of GNNs
are universally beneficial. For example, SGC [32], a linear simpli-
fication of GCNs, achieves superior computational efficiency and
parameter economy while maintaining competitive accuracy. Re-
cent work by Luo et al. [14] establishes that traditional GNNs out-
perform all subsequent architectural modifications on standard
node classification benchmarks. In RSs, LightGCN (7], derived from
NGCF [28] through systematic ablation studies, validates that re-
moving nonlinearities and feature transformations can enhance rec-
ommendation performance. These findings collectively underscore
a critical design principle: streamlined GNN architectures—when
carefully tailored to specific application requirements—consistently
deliver enhanced efficiency without compromising effectiveness.

7 Conclusion and Future Work

In this work, we empirically reveal the limited or even detrimental
effect of complex mechanisms, such as attention mechanism in the
existing GNN-based KGRSs. Motivated by this finding, we propose
a simple yet powerful GNN-based KGRS, LightKG, which features a
simplified GNN structure with scalar-based relation encoding and
linear neighbor-information aggregation mechanism, as well as
an efficient contrastive layer to address the over-smoothing issue.
Extensive experimental results demonstrate LightKG’s exceptional
performance, achieving superior recommendation accuracy while
significantly improving training efficiency. Our approach offers
valuable insights for the design of lightweight and effective GNN-
based KGRS. For future work, we will further investigate the role
of each module of LightKG to increase its interpretability. Also,
considering that the emergence of large language models [20, 30]
is generating new types of auxiliary data and also new types of RSs,
we plan to adapt LightKG accordingly.

8 Acknowledgment

This research is supported by the State Key Laboratory of Industrial
Control Technology, China (Grant No. ICT2024C01), and partially
supported by the Fundamental Research Funds for the Central
Universities (2025ZFJH02) and the Ministry of Education, Singa-
pore, under its MOE AcRF Tier 1 SUTD Kickstarter Initiative (SKI
2021_06_12).

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

References

(1]

(2]

3

=

[10]

[11

[12

[13]

[14

[15

[16

[17]

(18

[19

[20

[21

Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, and Mirko Marras. 2023. Rein-
forcement recommendation reasoning through knowledge graphs for explanation
path quality. Knowledge-Based Systems 260 (2023), 110098.

Yuanchen Bei, Weizhi Chen, Hao Chen, Sheng Zhou, Carl Yang, Jiapei Fan,
Longtao Huang, and Jiajun Bu. 2024. Correlation-Aware Graph Convolutional
Networks for Multi-Label Node Classification. arXiv preprint arXiv:2411.17350
(2024).

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao.
2024. On the opportunities and challenges of offline reinforcement learning for
recommender systems. ACM Transactions on Information Systems 42, 6 (2024),
1-26.

Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu. 2023. Meta
policy learning for cold-start conversational recommendation. In Proceedings of
the 16th ACM International Conference on Web Search and Data Mining. 222-230.
Saman Forouzandeh, Kamal Berahmand, Razieh Sheikhpour, and Yuefeng Li. 2023.
A new method for recommendation based on embedding spectral clustering in
heterogeneous networks (RESCHet). Expert Systems with Applications 231 (2023),
120699.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. 2018.
Predict then propagate: Graph neural networks meet personalized pagerank.
arXiv preprint arXiv:1810.05997 (2018).

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 639-648.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-
path based context for top-n recommendation with a neural co-attention model.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1531-1540.

Yanggin Jiang, Yuhao Yang, Lianghao Xia, and Chao Huang. 2024. Diffkg: Knowl-
edge graph diffusion model for recommendation. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining. 313-321.

Dongze Li, Hanbing Qu, and Jiagiang Wang. 2023. A survey on knowledge
graph-based recommender systems. In 2023 China Automation Congress (CAC).
IEEE, 2925-2930.

Haotian Li, Yong Wang, Songheng Zhang, Yangqiu Song, and Huamin Qu. 2021.
KG4Vis: A knowledge graph-based approach for visualization recommendation.
IEEE Transactions on Visualization and Computer Graphics 28, 1 (2021), 195-205.
Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019.
Label efficient semi-supervised learning via graph filtering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9582-9591.
Xinhang Li, Zhaopeng Qiu, Xiangyu Zhao, Zihao Wang, Yong Zhang, Chunxiao
Xing, and Xian Wu. 2022. Gromov-wasserstein guided representation learning
for cross-domain recommendation. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 1199-1208.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. 2024. Classic GNNs are Strong Baselines:
Reassessing GNNs for Node Classification. Advances in Neural Information
Processing Systems (2024).

Sung-Jun Park, Dong-Kyu Chae, Hong-Kyun Bae, Sumin Park, and Sang-Wook
Kim. 2022. Reinforcement learning over sentiment-augmented knowledge graphs
towards accurate and explainable recommendation. In Proceedings of the 15th
ACM International Conference on Web Search and Data Mining. 784-793.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. Uncertainty in
Artificial Intelligence (2012).

Lei Shi, Jiapeng Yang, Pengtao Lv, Lu Yuan, Feifei Kou, Jia Luo, and Mingying Xu.
2024. Self-derived Knowledge Graph Contrastive Learning for Recommendation.
In Proceedings of the 32nd ACM International Conference on Multimedia. 7571—
7580.

Wentao Shi, Xiangnan He, Yang Zhang, Chongming Gao, Xinyue Li, Jizhi Zhang,
Qifan Wang, and Fuli Feng. 2024. Enhancing Long-Term Recommendation with Bi-
level Learnable Large Language Model Planning. arXiv preprint arXiv:2403.00843
(2024).

Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong,
and Jie Zhang. 2022. Daisyrec 2.0: Benchmarking recommendation for rigorous
evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 7
(2022), 8206-8226

Zhu Sun, Hongyang Liu, Xinghua Qu, Kaidong Feng, Yan Wang, and Yew Soon
Ong. 2024. Large language models for intent-driven session recommendations.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 324-334.

Riku Togashi, Mayu Otani, and Shin’ichi Satoh. 2021. Alleviating cold-start
problems in recommendation through pseudo-labelling over knowledge graph.
In Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. 931-939

[22]

[23

[24

[26

[27

[28

™~
29,

[30

[31

[32

(34

[35

[36

[38

[39

[40

[41]

[42]

[43]

YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417-426.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and Zhongyuan Wang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 968-977.

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-task feature learning for knowledge graph enhanced recom-
mendation. In The World Wide Web Conference. 2000-2010.

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. In The World Wide Web
Conference. 3307-3313.

Tongzhou Wang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning. PMLR, 9929-9939.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950-958.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd International ACM
SIGIR Vonference on Research and Development in Information Retrieval. 165-174.
Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. 2021. Learning intents behind interactions
with knowledge graph for recommendation. In Proceedings of the Web Conference
2021. 878-887.

Ziyan Wang, Yingpeng Du, Zhu Sun, Haoyan Chua, Kaidong Feng, Wenya Wang,
and Jie Zhang. 2025. Re2llm: Reflective reinforcement large language model
for session-based recommendation. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 39. 12827-12835.

Minwei Wen, Hongyan Mei, Wei Wang, Xiaorong Xue, and Xing Zhang. 2024.
Multi-task recommendation based on dynamic knowledge graph. Applied Intelli-
gence (2024), 1-19.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861-6871.

Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.
Diffnet++: A neural influence and interest diffusion network for social recom-
mendation. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),
4753-4766.

Zhizhong Wu. 2024. An efficient recommendation model based on knowledge
graph attention-assisted network (kgatax). arXiv preprint arXiv:2409.15315 (2024).
Yuhao Yang, Chao Huang, Lianghao Xia, and Chunzhen Huang. 2023. Knowledge
graph self-supervised rationalization for recommendation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 3046
3056.

Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge
graph contrastive learning for recommendation. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1434-1443.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812-5823.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 353-362.

Haonan Zhang, Dongxia Wang, Zhu Sun, Yanhui Li, Youcheng Sun, Huizhi Liang,
and Wenhai Wang. 2024. Does Knowledge Graph Really Matter for Recommender
Systems? ACM Transactions on Information Systems (2024).

Y Zhang, Q Ai, X Chen, and P Wang. 2018. Learning over knowledge-base
embeddings for recommendation. arXiv preprint arXiv:1803.06540 (2018).
Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan
Lin, Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. 2022. RecBole
2.0: towards a more up-to-date recommendation library. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management.
4722-4726.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57-81.

Ding Zou, Wei Wei, Xian-Ling Mao, Ziyang Wang, Minghui Qiu, Feida Zhu,
and Xin Cao. 2022. Multi-level cross-view contrastive learning for knowledge-
aware recommender system. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1358-1368.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3-7, 2025, Toronto, ON, Canada

A APPENDIX Table 13: The MRR@ 10 of different models across different
. it i ML-1M.
A.1 The Complete Results of Fig. 1 Spartly scenamor on

Model 80% 40% 20% 10% 5%
In Section 3.1, we examine the performance of 12 SOTA KGRSs
CFKG 03405 0.2025 0.1487 0.1077 0.1047
across different sparsity levels on Last.FM, ML-1M and AMZ-B. CKE 0.3457 0.1878 0.1354 0.1092 0.0904
RippleNet 03062 01729 01250 0.1103 0.1021
Table 10: The Recall@10 of different models across different MCRec 0.3233 01757 0.1245 0.1099 0.1032
. . KGCN 03456 01734 0.1307 0.1084 0.1029
sparsity scenarios on Last.FM. KGNNLS 03051 0.1688 0.1279 0.107 0.0989
Model 80% 40% 20% 10% KGAT 03412 0.1870 0.1408 0.1101 0.0647
KGIN 03551 0.1976 0.1349 0.1157 0.1004
CFKG 02444 01797 0.1082 0.0983 MCCLK 03474 0.1900 0.1431 0.1063 0.0815
CKE 02453 01522 0.0544 0.0243 KGRec 03570 02020 0.1544 0.1086 0.0834
RippleNet 01633 01192 0.0774 0.0530 DiffKG 03428 01594 01202 0.0492 0.0378
MCRec 02132 01243 0.0935 0.0825 CL-SDKG 03428 01858 0.1329 0.1052 0.0857
KGCN 0.2149 01259 0.0677 0.0425
KGNNLS 0.2117 0.1281 0.0631 0.0378 path;ax 03233 0.1757 0.125 0.1103 0.1032
KGAT 0.2583 0.1410 0.0664 0.0202 embedding,nax 0.3457 0.2025 0.1487 0.1077 0.1047
KGIN 0.2727 0.1711 0.0770 0.0289 GNNax 0.3570 0.2029 0.1544 0.1157 0.1029
MCCLK 02699 01759 0.0555 00149 LightKG 03785 02032 01491 0.1237 0.1032
KGRec 02560 0.1758 0.0876 0.0291 Improve 602 O14n -343% S10% 0.09%
Diffkg 0.2520 0.1551 0.0479 0.0177
CL-SDKG 0.2409 01802 0.0621 0.0204
Table 14: The Recall@10 of different models across different
path,ax 0.2132 01243 0.0935 0.0825 . .
embedding,a 0.2453 01797 0.1082 0.0983 sparsity scenarios on AMZ-B.
GNN,pax 0.2727 0.1802 0.0876 0.0425 Model 0% 0% 20% 0%
LightKG 0.2929 021202 0.1012 0.0861 CFKG 01965 01357 01095 0.0840
Improve 7.41% 17.66% 15.49% 102.40% CKE 0.1979 0.1177 0.0631 0.0237
RippleNet 01561 0.1006 0.0753 0.0446
. . MCRec 01524 0.0983 0.0723 0.0461
Table 11: The MRR@ 10 of different models across different KGN 01550 01055 00757 00551
sparsity scenarios on Last.FM. KGNNLS 0.1508 0.0948 0.0728 0.0525
KGAT 01925 01356 0.0679 0.0351
Model 80% 40% 20% 10% KGIN 02090 0.1455 0.0911 0.0765
CFKG 0.1100 0.0717 0.0329 0.0304 MCCLK 0.2025 0.1468 0.1005 0.0671
CKE 0.1069 0.0590 0.0200 0.0094 KGRec 02035 0.1448 0.0986 0.0771
RippleNet 0.0656 0.0416 0.0259 0.0196 DiffKG 0.2039 0.1355 0.0843 0.0439
MCRec 0.0941 0.0433 0.0296 0.0231 CL-SDKG 0.2036 0.1367 0.0947 0.0685
KGON oo ooere oomz oS bl 0161 01006 00755 00de1
KGAT 01152 00529 00227 00082 embedding,nax 01979 0.1357 0.1098 0.0840
GNN 0.2090 0.1468 0.1005 0.0771
KGIN 01242 0.0667 0.0294 0.0130 max
MCCLK 01228 0.0676 0.0204 0.0058 LightKG 02120 0.1582 0.1148 0.0931
KGRec 01118 0.0673 0.0310 0.0125 Improve 144% 7.77% 1423% 20.75%
Diffkg 01192 0.0620 0.0195 0.0059
CL-SDKG 0.1054 0.0571 0.0155 0.0079

Table 15: The MRR@ 10 of different models across different

path-basedax 0.0941 0.0433 0.0296 0.0231 sparsity scenarios on AMZ-B.

embedding,,,qx 0.1100 0.0717 0.0329 0.0304

GNNpax 0.1242 00676 0.0310 0.0145 Model 80% 40% 20% 10%
LightKG 01350 0.0819 0.0396 0.0267 CFKG 0.0987 0.0632 00515 0.0422
Improve 8.61% 21.15% 27.74% 84.14% CKE 0.1037 0.0575 0.0266 0.0146
RippleNet 0.0838 0.0484 00422 0.0257
. . MCRec 0.0791 0.0472 0.0415 0.0274
Table 12: The Recall@ 10 of different models across different KGCN 0.0738 0.0501 0.0418 0.0309
sparsity scenarios on ML-1M. KGNNLS 0.0750 0.0482 00396 0.0247
KGAT 0.0997 0.0652 0.0283 0.0169
Model 80% 40% 20% 10% 5% KGIN 0.1099 0.0722 0.0452 0.0407
CFKG 01862 01272 0.0925 00615 0.0603 I\I’I(g(}iLK 0.1065 0.0715 05050 0.0389
CKE 01848 01136 00760 0.0604 0.0473 e 8'1‘1’?2 g'gzg; g'gﬁ; 8'8‘21;2
RippleNet 01590 0.1031 0.0694 0.0619 0.0575 CL‘SDK 5 01134 00635 0063 00104
MCRec 01610 01051 0.0690 0.0603 0.0550 s : : : -
KGCN 0.1594 0.1014 0.0738 0.0604 0.0575 path,nax 0.0838 0.0484 0.0422 0.0274
KGNNLS 0.1592 0.0945 0.0711 0.0601 0.0542 embedding,qx 0.1037 0.0632 0.0515 0.0422
KGAT 0.1830 0.1124 0.0833 0.0585 0.0311 GNN,ax 0.1134 0.0722 0.0505 0.0415
KGIN 01969 01254 0.0802 0.0612 0.0557 -
MCCLK 0.1853 01198 0.0841 0.0523 0.0475 LightKG 01173 0.0762 0.0577 0.0472
KGRec 0.1960 0.1290 0.0934 0.0572 0.0399 Improve 344% 554% 14.26% 13.73%
DiffKG 0.1846 0.0846 0.0615 0.0512 0.0357
CL-SDKG 0.1861 0.1122 0.0742 0.0602 0.0445 Due to the sparsity of the BX dataset, it is difficult to further
pathax 0.1610 0.1051 0.0694 0.0619 0.0575 reduce the sampling rate, making it infeasible for us to conduct
embeddingmax 01862 01272 0.0925 0.0615 0.0603 experiments on it.
GNN pax 0.1969 0.1290 0.0934 00612 0.0575
LightKG 02015 01284 0.099 0.0699 0.0587

Improve 2.33% -0.47% 6.65% 14.22% 2.16%

KDD ’25, August 3-7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Table 19: The MRR@ 10 after removing the attention mecha-

A.2 The Complete Results of Tab. 3
nism on ML-1M.

We show the complete results of Tab. 3. The sampling ratio is set

10% for Last.FM and AMZ-B, 5% for ML-1M. Since the BX dataset is model 807 0% 2% 10% 5%
already extremely sparse, 80% sampling ratio is sufficient. The Pear- KGAT 03412 0.187 0.1408 0.1101 0.0647
. . . KGAT,- 0.3413 0.1885 0.1349 0.1101 0.0638
son correlation coeflicients on four datasets are all negative.
. . KGIN 03551 0.1976 0.1349 0.1157 0.1004
Table 16: The results of complexity analysis. KGIN,_ 03596 01950 0.1362 0.1152 0.0996
Model Time Complexity (ranked from low to high) ~ LastFM ~ ML-IM Amz-B BX MCCLK 0.3474 0.1900 0.1431 0.1063 0.0815
KGCN O(d(|Gka| + R x |U| +|I])) 0.0425 0.0575 0.0551 0.0867 MCCLK,— 0.3475 0.1898 0.1434 0.1081 0.0823
KGNNLS 0(d(|Gkc|+|V|+|U| x |R])) 00378 00542 0.0525 0.0731
KGIN O(d|Gkal + &*|Gurl) 0.0289 0.0557 0.0765 0.0801 KGRec 0.3570 0.2029 0.1544 0.1086 0.0834
KGRec 0(d |G| +d|Guil) 00291 0039 00771 0.1033 KGRec,- 03567 0.2070 0.1565 0.1124 0.0834
DiffKG O(d&2|Gka| +d|Gurl) 00177 00357 0.0439 0.0581
CL-SDKG 0@ (IGxal +1U)) +dGurl) 00204 00445 00685 0.0924 DiffKG 03428 01594 0.1202 0.0492 0.0378
KGAT O(d*(IGkG |+ |Gurl + | U+ || +|V])) 00202 00311 00351 0.0499 .
MCCLK O G| +dl Got) ot ot ool oer DiffkG,- 0.3441 0.1616 0.1215 0.0509 0.0385
Correlation -0.9374 -0.6682 -0.1145 -0.4836 CL-SDKG 0.3428 0.1858 0.1329 0.1052 0.0857
CL-SDKG,- 0.3444 0.1872 0.1338 0.1067 0.0877
A.3 The Complete Results of Tab. 4 Average 03477 01871 0.1377 0.0992 0.0756
Last, we present the rest of experimental results with the atten- Averageq— 03489 01882 0.1377 0.1006 0.0759
»Wep p Improve 035% 0.57% 0.00% 139% 0.40%

tion mechanism removed. Noticing that removing the attention
mechanism leads to a slight decline in performance on the AMZ-B,
we attribute this to the method we used to remove the attention
mechanism being too crude, which damaged the model’s structure.

Table 20: The Recall@10 after removing the attention mech-
anism on AMZ-B.

This slight decline does not affect our conclusion: the attention Model 80% 40% 20% 10%
mechanism is useless even harmful in GNN-based KGRSs. KGAT 0.1925 0.1356 0.0679 0.0351
. . KGAT,_ 01872 0.1342 00666 0.0316
Table 17: The MRR@ 10 after removing the attention mecha-
. Last.EM KGIN 0.2090 0.1455 0.0911 0.0765
nism on Last.kivl. KGIN, 0.2081 0.1466 0.0901 0.0738
model 80% 40% 20% 10% MCCLK 02025 0.1468 01005 0.0671
KGAT 0.1152 0.0529 0.0227 0.0082 MCCLKg- 02016 0.1477 0.1042 0.0671
KGAT,- 0.1172 00475 00264 0.0096 KGRec 02035 01448 0.0986 0.0771
KGIN 0.1243 0.0667 0.0294 0.0130 KGRec, - 0.2041 0.1476 0.0976 0.0773
KGINg- 01241 00654 0.0301 0.0138 DiffKG 02039 01355 00843 0.0439
MCCLK 0.1228 0.0676 0.0204 0.0058 DiffKG,- 02098 0.1394 0.0875 0.0477
MCCIK,- 01215 00668 00209 0.0059 CL-SDKG 02036 0.1367 0.0947 0.0685
KGRec 0.1117 0.0673 0.0310 0.0125 CL-SDKG,- 0.2050 0.1379 0.0964 0.0697
KGRecg- 0.1140 0.0669 0.0311 0.0125 Average 02025 0.1408 0.0895 0.0614
DiffKG 0.1192 0.0620 0.0195 0.0059 Averageq— 0.2026 0.1422 0.0904 0.0612
DiffKG,- 0.1177 0.0627 0.0195 0.0067 Improve 007% 1.01% 0.99% -0.28%
CL-SDKG 0.1054 0.0571 00155 0.0079
CL-SDKG,- 0.1059 0.0562 0.0157 0.0079 Table 21: The MRR@ 10 after removing the attention mecha-
Average 0.1164 0.0623 0.0231 0.0089 nism on AMZ-B.
Average,— 0.1167 0.0609 0.0240 0.0094
Improve 026% -217% 375% 582% model 80% 40% 20% 10%
KGAT 0.0997 0.0652 0.0283 0.0169
. . KGAT,— 0.0956 0.0644 00275 0.0143
Table 18: The Recall@10 after removing the attention mech- a
anism on ML-1M KGIN 0.1099 0.0722 00452 0.0407
KGIN,, 01097 0.0731 0.0452 0.0391
Model 80% 40% 20% 10% 5%
MCCLK 01065 0.0715 00505 0.0389
KGAT 0.1830 0.1124 0.0833 0.0585 0.0311 MCCLK,- 0.1067 0.0711 0.0508 0.0389
KGAT,- 0.1837 0.1152 00795 0.0611 0.0317
KGRec 0.1094 0.0707 0.0483 0.0415
KGIN 01969 0.1254 0.0802 0.0612 0.0557 KGRecq— 0.1083 0.0699 0.0477 0.0406
KGIN,- 0.1971 0.1250 0.0799 0.0607 0.0554 -
DiffKG 0.1116 0.0622 00457 0.0286
MCCLK 01853 0.1198 00841 0.0723 0.0475 DiffKG,— 0.1159 0.0627 0.0462 0.0291
MCCLK,- 0.1860 0.1193 0.0841 00693 0.0478
CL-SDKG 01134 0.0635 0.0473 0.0404
KGRec 01960 01290 0.0934 0.0572 0.0399 CL-SDKG,- 0.1138 0.0631 0.0479 0.0408
KGRecp,- 0.1966 0.1293 0.0942 0.0600 0.0399
Average 01084 00676 00442 0.0345
DiffKG 0.1846 0.0846 0.0615 0.0512 0.0357 Average,— 01083 0.0674 0.0442 0.0338
DiffKG,- 0.1892 0.0877 0.0611 0.0557 0.0391 Improve 0.08% -025% 0.00% -2.03%
CL-SDKG ~ 0.1861 0.1122 0.0742 00602 0.0445
CL-SDKG,- 0.1881 0.1134 0.0795 0.0611 0.0473
Average 01887 01139 00795 0.0601 0.0424
Average,— 01901 0.1150 0.0797 0.0613 0.0435

Improve 0.76% 0.95% 0.33% 2.02% 2.70%

	Abstract
	1 Introduction
	2 Preliminary
	3 Motivation
	3.1 Impact of Interaction Sparsity
	3.2 Impact of Model Complexity
	3.3 Impact of Removing Attention Mechanisms

	4 LightKG
	4.1 Simplified GNN Layer
	4.2 Efficient Contrastive Layer
	4.3 Model Prediction and Loss Function
	4.4 Model Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results and Analysis
	5.3 Further Exploration of LightKG

	6 Related Work
	6.1 Knowledge-aware Recommender Systems
	6.2 Sparsity Issue in Recommender Systems
	6.3 Simplifying GNN for Different Tasks

	7 Conclusion and Future Work
	8 Acknowledgment
	References
	A APPENDIX
	A.1 The Complete Results of Fig. 1
	A.2 The Complete Results of Tab. 3
	A.3 The Complete Results of Tab. 4

