
ar
X

iv
:2

50
6.

10
34

7v
1

 [
cs

.L
G

]
 1

2
Ju

n
20

25

LightKG: Efficient Knowledge-Aware Recommendations with
Simplified GNN Architecture

Yanhui Li
Zhejiang University
Hangzhou, China

YanHuiLi@zju.edu.cn

Dongxia Wang∗
Zhejiang University
Hangzhou, China

dxwang@zju.edu.cn

Zhu Sun
Singapore University of Technology

and Design
Singapore

sunzhuntu@gmail.com

Haonan Zhang
Zhejiang University
Hangzhou, China

haonanzhang@zju.edu.cn

Huizhong Guo
Zhejiang University
Hangzhou, China
huiz_g@zju.edu.cn

Abstract
Recently, Graph Neural Networks (GNNs) have become the domi-
nant approach for Knowledge Graph-aware Recommender Systems
(KGRSs) due to their proven effectiveness. Building upon GNN-
based KGRSs, Self-Supervised Learning (SSL) has been incorporated
to address the sparity issue, leading to longer training time. How-
ever, through extensive experiments, we reveal that: (1)compared
to other KGRSs, the existing GNN-based KGRSs fail to keep their
superior performance under sparse interactions even with SSL. (2)
More complex models tend to perform worse in sparse interaction
scenarios and complex mechanisms, like attention mechanism, can
be detrimental as they often increase learning difficulty. Inspired by
these findings, we propose LightKG, a simple yet powerful GNN-
based KGRS to address sparsity issues. LightKG includes a sim-
plified GNN layer that encodes directed relations as scalar pairs
rather than dense embeddings and employs a linear aggregation
framework, greatly reducing the complexity of GNNs. Additionally,
LightKG incorporates an efficient contrastive layer to implement
SSL. It directly minimizes the node similarity in original graph,
avoiding the time-consuming subgraph generation and comparison
required in previous SSL methods. Experiments on four benchmark
datasets show that LightKG outperforms 12 competitive KGRSs
in both sparse and dense scenarios while significantly reducing
training time. Specifically, it surpasses the best baselines by an
average of 5.8% in recommendation accuracy and saves 84.3% of
training time compared to KGRSs with SSL. Our code is available
at https://github.com/1371149/LightKG.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3737026

CCS Concepts
• Information systems → Recommender systems; • Knowl-
edge Graph→ Graph Neural Networks.

Keywords
Recommender Systems, Knowledge Graph, Sparse Scenarios, Graph
Neural Network
ACM Reference Format:
Yanhui Li, DongxiaWang, Zhu Sun, Haonan Zhang, andHuizhongGuo. 2025.
LightKG: Efficient Knowledge-Aware Recommendations with Simplified
GNN Architecture. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3711896.3737026

1 Introduction
Recommender Systems (RSs) aim to capture user preferences from
their behavior to filter irrelevant information in domains such as
movies, news, and e-commerce [9]. Due to the Matthew effect [3],
interactions in real-world scenarios often concentrate on a few
popular items or active users, resulting in "sparse scenarios" where
the majority of users and items have limited interactions. Such
scenarios pose significant challenges to RSs in providing accurate
and personalized recommendations, where poor performance could
lead to user churn and significant economic losses [18].

To address this, Knowledge Graphs (KGs) have been incorpo-
rated into RSs to provide rich auxiliary information, forming Knowl-
edge Graph-aware Recommender Systems (KGRSs) [31]. Based on
the model framework, KGRSs can be categorized into three types,
among which Graph Neural Network (GNN) emerges as the domi-
nant solution [10], primarily due to their proven effectiveness in
encoding hierarchical relational patterns in KGs. Recent advance-
ments leverage Self-Supervised Learning (SSL) [36, 43] to extract
more supervisory signals, enhancing recommendation performance
in sparse scenarios while leading to longer training time (see Tab. 1).

However, we evaluate the recommendation accuracy of 12 KGRSs
under varying levels of interaction sparsity and observe that while
GNN-based KGRSs always achieve the best performance compared
to other KGRSs in dense scenarios, they generally fail to do so in
sparse scenario even with SSL. Then, we analyze the complexity of
each GNN-based KGRS and find that more complex models tend to

https://orcid.org/0009-0000-2180-9157
https://orcid.org/0000-0001-9812-3911
https://orcid.org/0000-0002-3350-7022
https://orcid.org/0009-0009-9782-4121
https://orcid.org/0009-0004-0011-8612
https://github.com/1371149/LightKG
https://doi.org/10.1145/3711896.3737026
https://doi.org/10.1145/3711896.3737026
https://doi.org/10.1145/3711896.3737026
https://arxiv.org/abs/2506.10347v1

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Table 1: The Recall@10 and training time per epoch for GNN-
based KGRSs. More recently-proposed models tend to have
longer training time, indicating increased model complexity.

Model Amazon-book ML-1M Book-Crossing Last.FM
Recall time Recall time Recall time Recall time

Supervised
method

KGCN(2019) 0.1550 0.76s 0.1594 2.13s 0.0467 0.72s 0.2149 0.71s
KGNN-LS(2019) 0.1508 1.52s 0.1592 5.92s 0.0330 1.50s 0.2117 1.33s
KGAT(2019) 0.1925 1.78s 0.1830 8.73s 0.0499 1.81s 0.2583 0.80s
KGIN(2021) 0.2090 8.21s 0.1969 19.26s 0.0801 10.21s 0.2727 1.48s

Self-
Supervised
method

MCCLK(2022) 0.2025 8.48s 0.1853 161.48s 0.0607 59.06s 0.2699 5.01s
KGRec(2023) 0.2035 4.47s 0.1960 99.69s 0.1033 21.15s 0.2560 3.10s
DiffKG(2024) 0.2039 16.87s 0.1846 115.46s 0.0581 60.92s 0.2520 2.58s

CL-SDKG(2024) 0.2036 52.52s 0.1861 281.2s 0.0924 9.39s 0.2409 1.92S
LightKG(Ours) 0.2120 3.70s 0.2029 19.07s 0.1154 1.58s 0.2929 0.92s

perform worse in sparse scenarios. To further explore the influence
of model complexity, we then design experiments to investigate
whether and how simplifying GNN-based KGRSs, e.g., removing
the attention mechanism employed by six representative KGRSs
(e.g., KGAT [27]), would affect their recommendation accuracy. Sur-
prisingly, the results show that the removal mostly influences little,
while often even increases the accuracy slightly. These observations
suggest that complex mechanisms in GNN-based KGRSs may be
unsuitable for sparse scenarios, potentially leading to overfitting or
poor generalization. This insight inspires us to look for a simpler
yet effective GNN-based KGRS to address the sparsity issue.

To this end, we propose LightKG, a simple yet powerful GNN-
based KGRS, to address the sparsity issue. It includes a simplified
GNN layer to derive node embeddings and an efficient contrastive
layer to implement SSL from the perspective of alleviating the over-
smoothing issue. In the GNN layer, unlike other KGRSs that encode
relations as vectors or transformation matrices, LightKG encodes
them simply as scalar pairs. Then, LightKG employs these scalars
to a linear aggregation framework, which significantly reduces the
model’s complexity. In the contrastive layer, LightKG avoids the
generation and comparison of subgraphs, which is time-consuming
required in previous SSL methods. Instead, LightKG directly mini-
mizes the similarity between nodes on the original graph, which
significantly reduces the training time for SSL.

Equipped with a simpler scalar-based relation encoding strat-
egy, a linear information aggregation framework, and efficient con-
trastive layers, we examine how LightKG performs compared to
the existing KGRSs. We apply LightKG to four benchmark datasets
which vary greatly in sizes and sparsity levels. The experimental
results show that LightKG outperforms 12 State-Of-The-Art (SOTA)
KGRSs of diverse types on these benchmark datasets, not only with
sparse but also with dense interactions. Meanwhile, LightKG shows
high training efficiency compared to other KGRSs with SSL. To
summarize, our contributions are highlighted as follows:
• For the first time, we empirically reveal that simpler GNN-based
KGRSs can perform better with sparse interactions, whereas com-
plex mechanisms like attention in GNNs have minimal impact or
may even degrade the recommendation accuracy.

• We propose LightKG, a simple yet powerful GNN-based KGRS
which incorporates a much simpler relation encoding strategy,
a linear information aggregation framework and efficient con-
trastive layers. These designs allow LightKG to significantly re-
duce training time while enhancing recommendation accuracy,
particularly in sparse scenarios.

• We evaluate LightKG on four benchmark datasets against 12
SOTA KGRSs. The results demonstrate its superiority in both

recommendation accuracy and training efficiency. Particularly, it
surpasses the best baseline bymargins ranging from 1.4% to 11.7%
on accuracy, and requires only 16.8% to 82.7% of the training time
compared to SOTA GNN-based KGRSs with SSL.

2 Preliminary
In this section, we will briefly introduce the related concepts, includ-
ing how a GNN-based KGRS generally works and the Collaborative
Knowledge Graph (CKG) [27] it usually employs.

Usually a GNN-based KGRS is trained on a CKG, which consists
of a user-item interaction graph G𝑈 𝐼 and a KG G𝐾𝐺 . For example,
as shown in Fig. 2, Tom buys a book written by Jane, where Tom
is a user, the book is an item, the author Jane is an entity, and the
relation 𝑟 between Jane and the book is ‘book-author’. Specifically,
let U,I,V denote the set of users, items and entities respectively.
G𝑈 𝐼 = {(𝑢, Interact, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I}, where Interact is a rela-
tion, meaning an observed interaction between user 𝑢 and item
𝑖 . G𝐾𝐺 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ (I ∪ V), 𝑟 ∈ R′}, where R′ denotes the
set of relations in KG (Interact ∉ R′). The user-item graph can be
integrated with a KG as a CKG: G = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ K, 𝑟 ∈ R},
where K = (U ∪ I ∪V), R = R′ ∪ {Interact}.

To train a model, each node and relation will firstly be mapped
to the feature space. Let 𝒆 (0)

𝑘
denote the embedding of node 𝑘 , and

𝒆𝑟 denote the embedding of relation 𝑟 . Let N𝑘 denote the set of
neighbors of node 𝑘 . The node embeddings are randomly initialized.
Then with the involvement of the relations, the model updates the
node embeddings by aggregating information from its neighboring
nodes, performing it iterately for 𝐿 times as shown in Equ. 1. Finally,
a more accurate node embedding is obtained for RSs, given by,

𝒆 (𝑙)
𝑘

=
∑︁

(𝑘,𝑟,𝑡) ∈N𝑘
𝑨𝒈𝒈 (𝒆 (𝑙−1)

𝑡 , 𝒆𝑟), 𝑙 ∈ 1, 2, ..., 𝐿, (1)

where 𝑨𝒈𝒈(·) is a function used for embedding aggregation, which
varies in different models. Embedding 𝒆𝑟 can be encoded as vectors
or matrices depending on the specific GNN-based KGRS. Together
with the embeddings obtained by the aggregation in the 𝐿 layers, we
obtain 𝐿 + 1 embeddings for node 𝑘 : {𝒆 (0)

𝑘
, 𝒆 (1)
𝑘

, 𝒆 (2)
𝑘

, ..., 𝒆 (𝐿)
𝑘

}. The
embedding of node 𝑘 for model prediction, i.e., 𝒆∗

𝑘
can be obtained

using a combination function,
𝒆∗𝑘 = 𝑪𝒐𝒎𝒃 (𝒆 (0)

𝑘
, 𝒆 (1)
𝑘
, 𝒆 (2)
𝑘
, ..., 𝒆 (𝐿)

𝑘
) . (2)

Finally, the embeddings 𝒆∗𝑢 , 𝒆∗𝑖 of each user-item pair (𝑢, 𝑖) are used
to get the prediction score 𝑦𝑢𝑖 = 𝒆∗⊤𝑢 𝒆∗

𝑖
. Based on these prediction

scores, all candidate items are ranked in descending order. The
top-ranked items are then selected and recommended to the users.

3 Motivation
In this section, we present a series of exploratory experiments, the
observations of which motivate our proposal for LightKG. We focus
on scenarios where user-item interaction is sparse. First, we evalu-
ate 12 KGRSs at different sparsity levels and observed that while
GNN-based KGRSs always achieve the best performance compared to
other KGRSs in dense scenarios, they fail to do so in sparse scenario.
Then, we analyze the complexity of each GNN model and find that
higher-complexity models tend to perform poorly in sparse scenarios.
To further explore the connection between complexity and perfor-
mance under sparse scenarios, we simplify several SOTA KGRSs
by removing their attention mechanisms. Such removal yields a

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3–7, 2025, Toronto, ON, Canada

80% 40% 20% 10%

0.1

0.2

0.3

Sampling Ratio

Re
ca
ll@

10

(a) Last.FM

80% 40% 20% 10%

0.05

0.1

0.15

Sampling Ratio
M
RR

@
10

(b) Last.FM

80% 40% 20% 10% 5%

0.1

0.2

Sampling Ratio

Re
ca
ll@

10

(c) ML-1M

80% 40% 20% 10% 5%

0.1

0.2

0.3

Sampling Ratio

M
RR

@
10

CFKG CKE
KGCN KGAT
KGIN KGNNLS

MCCLK KGRec
RippleNet DiffKG
CL-SDKG MCRec
LightKG

(d) ML-1M

Figure 1: Performance of KGRSs across varying sparsity levels. Similar trends can be noted on other datasets in our study. Due
to space limitations, we only present the results on Last.FM and ML-1M, with the remaining results in the appendix.

Table 2: The best Recall@10 achieved by each group of KGRSs
at different sparsity levels on the Last.FM. Bold values high-
light the top performance for each sparsity level. The "Im-
prove" shows the relative improvement of LightKG over the
best GNN-based KGRSs.

Model 80% 40% 20% 10%

Path𝑚𝑎𝑥 0.2132 0.1243 0.0935 0.0825
Embedding𝑚𝑎𝑥 0.2453 0.1797 0.1082 0.0983

GNN𝑚𝑎𝑥 0.2727 0.1802 0.0876 0.0425

LightKG 0.2929 0.2120 0.1012 0.0861
Improve 8.52% 17.66% 15.49% 102.40%

surprising result: the attention mechanisms in these models seem not
only ineffective but also potentially detrimental.

3.1 Impact of Interaction Sparsity
We evaluate 12 recent and representative KGRSs on Last.FM and
ML-1M datasets (detailed statistics are provided in Tab. 5), using
Recall@10 and MRR@10 as evaluation metrics. To simulate vary-
ing degrees of sparse interactions, we build datasets with varying
sparsity levels by adjusting the sampling ratio of the full datasets.
Sampling ratios are set according to the original density levels of
each dataset, with 10% and 5% representing sparse scenarios, and
80%, in comparison, serves as relatively dense scenario. Hyperpa-
rameters are tuned for all models across varying sparsity levels,
including the number of GNN layers, learning rates, negative sam-
pling ratio, and other key parameters.

Fig. 1 presents the experimental results, with the x-axis repre-
senting sampling ratio (e.g., 40% means 40% of the full dataset is
sampled for training). To systematically evaluate the performance of
KGRSs in sparse scenarios, we categorized them into three groups
based on their frameworks [9]: path-based (MCRec, RippleNet),
embedding-based (CFKG, CKE), and GNN-based (KGCN, KGNNLS,
KGAT, KGIN, MCCLK, KGRec, DiffKG, CL-SDKG). Tab. 2 summa-
rizes the highest Recall achieved by each group at different sparsity
levels on the Last.FM dataset. For example, "Path𝑚𝑎𝑥 in 40%" repre-
sents the highest Recall achieved by path-based KGRSs (RippleNet,
MCRec) at a 40% sampling ratio.

The results reveal several key observations. First, as expected,
the accuracy of all KGRSs declines with increasing data sparsity
as shown in Fig. 1 and Tab. 2. Second, while GNN-based KGRSs
demonstrate superior performance in dense scenarios (sampling ra-
tios of 80% and 40%), their performance degrades more significantly
in sparse scenarios (sampling ratios of 20% and 10%) even with SSL,
as shown in Tab. 2. Notably, attempts to mitigate this degradation
through expanded GNN receptive fields prove ineffective. In fact,

Table 3: Complexity analysis and Recall@10 on Last.FM (sam-
pling Ratio: 10%) and ML-1M (sampling Ratio: 5%). Correla-
tion refers to the Pearson correlation coefficient between
complexity ranking and Recall.

Model Time Complexity (ranked from low to high) Last.FM ML-1M

KGCN(2019) O(𝑑 (| G𝐾𝐺 | + |R | × |U | + |I |)) 0.0425 0.0575
KGNNLS(2019) O(𝑑 (| G𝐾𝐺 | + |V | + |U | × |R |)) 0.0378 0.0542
KGIN(2021) O(𝑑 | G𝐾𝐺 | + 𝑑2 | G𝑈 𝐼 |) 0.0289 0.0557
KGRec(2023) O(𝑑2 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0291 0.0398
DiffKG(2024) O(𝑑2 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0177 0.0357

CL-SDKG(2024) O(𝑑2 (| G𝐾𝐺 | + |U |) + 𝑑 | G𝑈 𝐼 |) 0.0204 0.0445
KGAT(2019) O(𝑑2 (| G𝐾𝐺 | + | G𝑈 𝐼 | + |U | + |I | + |V |)) 0.0202 0.0311
MCCLK(2022) O(𝑑3 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0149 0.0475

Correlation -0.9374 -0.6682

introducing additional GNN layers often brings in noise, which out-
weighs the potential benefits of additional information [42]. Lastly,
Fig. 1 reveals that simpler models like KGCN and KGNN-LS fre-
quently outperform more complex counterparts such as KGAT and
MCCLK in sparse scenarios. This indicates a notable correlation
between model complexity and accuracy in sparse scenarios, which
will be further explored in the following subsections.

3.2 Impact of Model Complexity
Due to the significant differences in frameworks among various
types of KGRSs, comparing their complexities is challenging. There-
fore, we focus on GNN-based KGRSs, which is the most widely
adopted framework [10]. We analyze the time complexity of a sin-
gle GNN layer, as it serves as a fundamental building block for
most GNN-based KGRSs. Let 𝑑 denote the embedding size, while
|G𝑈 𝐼 | and |G𝐾𝐺 | represent the number of triplets in the user-item
interaction graph and KG, respectively.

Tab. 3 ranks KGRSs by their time complexity and reports their
Recall@10 on Last.FM (sampling ratio: 10%) and ML-1M (sampling
ratio: 5%). The correlation shows the Pearson correlation coefficient
between complexity ranking and Recall@10, with negative values
indicating an inverse relationship. The results reveal the following
observations. (1) Impact of Complexity in Sparse Scenarios:
Models with higher complexity generally perform worse in sparse
scenarios. This is supported by the strongly negative Pearson cor-
relation between model complexity and Recall in sparse scenarios
(e.g., -0.9374 on Last.FM and -0.6682 on ML-1M). (2) Effectiveness
of SSL: SSL helps mitigate the issue of insufficient training data in
sparse scenarios by extracting more supervisory signals. This can
be supported by the fact that although KGRec is more complex than
KGIN, its SSL training mechanism leads to superior performance
on Last.FM compared to KGIN.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Table 4: The Recall@10 after removing the attention mech-
anism on Last.FM. "Average" and "Average𝑎−" represent the
average Recall of the six SOTA KGRSs with and without at-
tention mechanisms, respectively, while "Improve" indicates
the latter’s improvement over the former.

Model 80% 40% 20% 10%

KGAT 0.2583 0.1423 0.0677 0.0202
KGAT𝑎− 0.2690 0.1466 0.0667 0.0228

KGIN 0.2727 0.1711 0.0770 0.0289
KGIN𝑎− 0.2718 0.1718 0.0796 0.0307

KGRec 0.2560 0.1758 0.0876 0.0291
KGRec𝑎− 0.2573 0.1740 0.0872 0.0291

MCCLK 0.2699 0.1758 0.0555 0.0149
MCCLK𝑎− 0.2698 0.1792 0.0557 0.0152

DiffKG 0.2520 0.1551 0.0479 0.0177
DiffKG𝑎− 0.2564 0.1599 0.0488 0.0214

CL-SDKG 0.2409 0.1591 0.0431 0.0203
CL-SDKG𝑎− 0.2424 0.1571 0.0450 0.0204

Average 0.2583 0.1632 0.0631 0.0219
Average𝑎− 0.2611 0.1648 0.0638 0.0233
Improve +1.09% +0.97% +1.10% +6.05%

3.3 Impact of Removing Attention Mechanisms
Tab. 3 shows that complex models may sometimes underperform
simpler models in sparse scenarios. To further explore this issue, a
natural approach is to examine whether and how making models
simpler, e.g., removing their attention mechanisms, would influence
recommendation accuracy.1 Specifically, We implement it by fixing
attention weights to 1 in six SOTA KGRSs and conduct the same
experiment as in Section 3.1. Notably, this removal is rather simple
and can lead to substantial disruption of the model’s structure. For
example, the original structure of KGAT is as follows:

𝑎 (ℎ, 𝑟, 𝑡) = (𝑾𝑟 𝒆𝑡)⊤ tanh
(
(𝑾𝑟 𝒆ℎ + 𝒆𝑟)

)
, (3)

𝜋 (ℎ, 𝑟, 𝑡) = exp(𝑎 (ℎ, 𝑟, 𝑡))∑
(ℎ,𝑟 ′,𝑡 ′) ∈Nℎ exp(𝑎 (ℎ, 𝑟 ′, 𝑡 ′)) , (4)

𝒆 (𝑙)
ℎ

=
∑︁

(ℎ,𝑟,𝑡) ∈Nℎ
𝜋 (ℎ, 𝑟, 𝑡)𝒆 (𝑙−1)

𝑡 , (5)

where𝑾𝑟 ∈ R𝑑×𝑑 is the transformation matrix of relation 𝑟 . The
removal of attention impairs KGAT’s ability to account for the
influence of different relations, simplifying its GNN structure as:

𝒆 (𝑙)
ℎ

=
∑︁

(ℎ,𝑟,𝑡) ∈Nℎ
𝒆 (𝑙−1)
𝑡 . (6)

The results are presented in Tab. 4. The subscript 𝑎− (e.g., KGAT𝑎−)
denotes the altered model (of KGAT) with the attention mechanism
removed. Due to space limitation, we only present the Recall@10
results for Last.FM, as similar conclusions are observed across other
datasets in appendix. Surprisingly, despite the simplicity of the
removal method, we observed that: (1) in most cases, removing the
attention mechanism slightly improves recommendation accuracy;
and (2) as the data sparsity level increases, the improvement becomes
more pronounced. These observations strongly support simpler mod-
els are more suited for sparse scenarios.

Intuitively, complexmodels often require substantial train-
ing data to effectively learn their parameters and achieve op-
timal performance. In sparse scenarios, they often underfit

1A unified ablation study is challenging due to the structural and functional diversity
of these models, and our focus is solely on verifying the influence of simpler models.

or generalize poorly. Therefore, simpler models are better
suited to address the challenges posed by sparse scenarios.

4 LightKG
Our previous experimental explorations inspire us to design a sim-
pler yet effective KGRS, LightKG. Fig. 2 displays its workflow. First,
it employs a simplified GNN layer, with scalar-based relation en-
coding and linear aggregation framework, for aggregating neighbor
information. Second, to shorten the training time for SSL, it employs
an efficient contrastive layer that directly minimizes the similarity
between nodes of the same type, eliminating the need for gener-
ating and comparing subgraphs—a common yet computationally
expensive approach adopted by previous SSL methods. Finally, it
derives matching scores for the recommendation task.

4.1 Simplified GNN Layer
We propose a simplified GNN layer, which serves to derive node
representations in the CKGs. The existing models such as KGRec,
MCCLK, and KGAT encode relations as vectors or matrices, which
are then incorporated into mechanisms such as attention and multi-
graph learning. To simplify the process of GNNs, we encode rela-
tions of the same type as scalar pairs, significantly reducing com-
plexity while retaining essential information. For example, consider
the triplet (book1, book-author, Jane). LightKG will encode the
relation "book-author" as a pair of learned scalars to denote the im-
portance of authors to books (”write") and books to authors (”written
by"), respectively. These scalars, similar to embeddings, are learned
through backpropagation after initialization. Although this may
seem simplistic in capturing the semantic information in the CKGs,
our subsequent experiments prove its effectiveness (refer to Tab. 7).

Inspired by the success of LightGCN [7], we propose a simple and
linear GNN framework tailored for CKGs by leveraging scalar-based
relations and excluding non-linear activation function. Specifically,
for a node 𝑘 , we use Equ. 7 to update its embedding 𝒆 (𝑙)

𝑘
in the 𝑙-th

GNN layer,
𝒆 (𝑙)
𝑘

=
∑︁

(𝑘,𝑟,𝑡) ∈N𝑘

𝛼𝑟𝑡𝑘√︁
|N𝑘 |

√︁
|N𝑡 |

𝒆 (𝑙−1)
𝑡 , (7)

where 𝛼𝑟𝑡𝑘 denotes scalar-based relation from node 𝑡 to 𝑘 . Note
that 𝛼𝑟𝑡𝑘 ≠ 𝛼𝑟𝑘𝑡 . For each node of user (𝑢) and item (𝑖) in CKG,
their final embeddings, which are used for model prediction, are
generated by combining the outputs from each GNN layer:

𝒆∗𝑢 =
∑︁𝐿

𝑙=0
1

𝐿 + 1
𝒆 (𝑙)
𝑢 , 𝒆∗𝑖 =

∑︁𝐿

𝑙=0
1

𝐿 + 1
𝒆 (𝑙)
𝑖
. (8)

By employing a simple and linear neighbor-information aggre-
gation framework with scalar-based relation encoding, LightKG
greatly simplifies the existing GNN-KGRSs, thereby reducing the
learning difficulty especially in sparse scenarios.

4.2 Efficient Contrastive Layer
Contrastive learning, as a form of SSL, can alleviate the issue of
insufficient supervised training data in sparse scenarios [36]. The
recent advances in contrastive learning show that SSL is effective
as it enhances the distinction between node embeddings [43]. Such
distinction can help alleviate the over-smoothing issue [37], a phe-
nomenon where node embeddings in GNNs become indistinguish-
able due to excessive aggregation of neighborhood information.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3–7, 2025, Toronto, ON, Canada

User-Item Interaction Graph

Knowledge Graph

Buy

Author Price Title

User

Item

Entity

Tom

Jane

Lucy

Book

Collaborative Knowledge Graph

Interact

Relation

Buy

𝑒(0)

Simplified GNN Layers

ℒ𝐵𝑃𝑅
ො𝑦𝑢𝑖

𝑒𝑢
(0)

𝑒𝑢
(1)

𝑒𝑢
(𝐿)

Friend

Nancy

𝑒𝑖
(0)

𝑒𝑖
(1)

𝑒𝑖
(𝐿)

Job

𝛼1

𝛼2

𝛼3

Doctor

Traning for Recommendation

Efficient Contrastive Layer

𝑒(1) 𝑒(2) 𝑒(𝐿)

𝛼1

𝛼1

𝛼2

𝛼3

𝛼1

User Embedding Space

ℒ𝑡𝑜𝑡𝑎𝑙

Entity

Over-Smoothing Issue

𝑒𝑢3

(0)
𝑒𝑢2

(0)

𝑒𝑢1

(0) 𝑒𝑢1

(0)

Enlarge𝑒𝑢2

(0)
𝑒𝑢3

(0)

Item Embedding Space

𝑒𝑖3
(0)

𝑒𝑖2
(0)

𝑒𝑖1
(0) 𝑒𝑖1

(0)

Enlarge𝑒𝑖2
(0)

𝑒𝑖3
(0)

ℒ𝑢

ℒ𝑖

𝛽𝑢𝛽𝑖

User Embedding Item Embedding

Entity Embedding 𝛼 Scalar-based Relation

𝑒(0) 𝑒(1) 𝑒(𝐿)

GNN . . .

solve

Combine

Predict

Vector Addition Vector Inner Product

Figure 2: Illustration of our proposed LightKG.
However, existing contrastive learning methods, such as those used
in MCCLK and KGRec, are time-consuming since they need to
generate subgraphs and make comparisons between them.

To address it, we aim to simplify the contrastive learning with
a specific focus on the over-smoothing issue. Inspired by [26], we
propose to gain more distinctive node embeddings by directly min-
imizing similarities between embeddings of different nodes. Empir-
ically, we find this works best when applied separately to nodes of
the same type, such as between users or between items, as follows,

min L𝑢 =
∑︁

𝑢1,𝑢2∈U
exp(𝒆 (0)⊤

𝑢1 𝒆 (0)
𝑢2), (9)

min L𝑖 =
∑︁

𝑖1,𝑖2∈I
exp(𝒆 (0)⊤

𝑖1
𝒆 (0)
𝑖2

), (10)

where 𝒆 (0)𝑢1 , 𝒆 (0)𝑢2 , 𝒆 (0)
𝑖1

and 𝒆 (0)
𝑖2

are normalized user and item embed-
dings at layer 0. We empirically find that adding the contrastive
layer at layer 0 yields the best performance, as it enables the model
to learn discriminative features from the outset, making deeper
layer representations naturally distinct.

However, Equ. 9 and Equ. 10 ignore two key factors. First, they
overlook the inherent similarity that exists between nodes. For
two users who have highly overlapping interaction records, their
embeddings should not be excessively differentiated. Second, over-
smoothing impacts nodes unevenly, as those with more neighbors
are more susceptible to losing their unique characteristics in GNNs.
Thus, it is crucial to consider the number of neighbors. By incorpo-
rating these factors, we refine Equ. 9 and Equ. 10 as follows:

min L𝑢 =
∑︁

𝑢1,𝑢2∈U
𝑤𝑢1,𝑢2 exp((1 − 𝑠𝑢1,𝑢2)𝒆

(0)⊤
𝑢1 𝒆 (0)

𝑢2), (11)

min L𝑖 =
∑︁

𝑖1,𝑖2∈I
𝑤𝑖1,𝑖2 exp((1 − 𝑠𝑖1,𝑖2)𝒆

(0)⊤
𝑖1

𝒆 (0)
𝑖2

), (12)

where 𝑠𝑖, 𝑗 =
N𝑖∩N𝑗√
|N𝑖 | |N𝑗 |

denotes the similarity, and 𝑤𝑖, 𝑗 = 1 −
1√

|N𝑖 | |N𝑗 |
reflects the impact of neighbor counts. By optimizing

Equ. 11 and Equ. 12, we effectively and efficiently address the over-
smoothing issue. Unlike prior works, we avoids the computationally
expensive task of generating and comparing subgraphs. Conse-
quently, our method not only enhances recommendation accuracy
(see Fig. 3) but also greatly shortens the training time (see Tab. 1).

4.3 Model Prediction and Loss Function
The embeddings obtained from the GNN layer can be used to derive
matching scores between users and items using 𝑦𝑢𝑖 = 𝒆∗⊤𝑢 𝒆∗

𝑖
. For

the recommendation task, we choose the BPR loss [16]. It optimizes
the personal ranking of items for each user by maximizing the
probability that he/she prefers a positively interacted item 𝑦𝑢𝑖 over
a randomly chosen non-interacted one 𝑦𝑢 𝑗 :

LBPR =
∑︁

𝑖∈N𝑢,∉𝑗N𝑢
− ln𝜎

(
𝑦̂𝑢𝑖 − 𝑦̂𝑢𝑗

)
, (13)

where 𝜎 is the sigmoid function. Together with our objectives for
the contrastive layer, we obtain the following objective function:

L𝑡𝑜𝑡𝑎𝑙 = LBPR + 𝛽𝑢L𝑢 + 𝛽𝑖L𝑖 + 𝜆∥Θ∥22, (14)

where Θ represents the model parameter set; 𝛽𝑢 and 𝛽𝑖 are two
hyperparameters that determine the respective strengths of L𝑢 and
L𝑖 ; and 𝜆 is the regularization coefficient.

4.4 Model Analysis
In this section, we analyze the complexity of LightKG, showing that
its time complexity is lower than that of all existing GNN-based
KGRSs. Therefore, LightKG is a simpler yet effective model, capable
of achieving robust learning even in sparse scenarios. We further
demonstrate that LightKG can be seen as an extension of LightGCN,
which means that LightKG inherits LightGCN’s efficient capability
to extract information from interaction data. Finally, we discuss the
encoding of relations as scalar pairs, which can be interpreted as
node labels, enabling the model to distinguish different node types
during representation learning.

4.4.1 Complexity Analysis. By encoding relations as scalar pairs
and incorporating a linear aggregation framework, LightKG achieves
a time complexity of O(𝑑 (|G𝑈 𝐼 | + |G𝐾𝐺 |)), which is significantly
lower than that of existing GNN-based KGRSs. This reduced com-
plexity not only improves computational efficiency but also ef-
fectively addresses learning challenges in sparse scenarios. The
simplicity of LightKG’s architecture allows it to learn effectively
from limited training data, making it particularly well suited for

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

sparse scenarios, where traditional GNN-based KGRSs often strug-
gle due to their complexity and high data demands. Moreover, in
dense scenarios, LightKG retains the strengths of GNN, leverag-
ing rich interaction data to deliver stronger performance. Thus,
LightKG is adaptable and effective for both sparse (see Tab. 2) and
dense (see Tab. 6) recommendation scenarios.

4.4.2 Relationship with LightGCN. For a better comparison, here
we consider only the interaction graphs, as LightGCN cannot be
applied to KG directly. We use 𝑨 ∈ R |U |× |I | to denote the inter-
action matrix, where 𝑨(𝑢,𝑖) = 1 means an observed interaction
between user 𝑢 and item 𝑖 . Based on this, the matrix form of GNN
in LightGCN can be denoted as follows:

𝑬 (𝑙) = 𝑫− 1
2

(
0 𝑨
𝑨𝑇 0

)
𝑫− 1

2 𝑬 (𝑙−1) , (15)

where 𝑫 ∈ R(|U |+|I |)×(|U |+|I |) is a diagonal matrix. For LightKG,
we use a pair of scalars 𝛼𝑢 and 𝛼𝑖 to denote the relation encoding
between users and items. Then, the matrix form of GNN in LightKG
can be denoted as follows:

𝑬 (𝑙) = 𝑫− 1
2

(
0 𝛼𝑖𝑢𝑨

𝛼𝑢𝑖𝑨𝑇 0

)
𝑫− 1

2 𝑬 (𝑙−1) , (16)

𝑬 (𝑙) = 𝑫− 1
2

(
0 𝑨
𝑨𝑇 0

)
𝑫− 1

2 𝑬 (𝑙−1)

+ 𝑫− 1
2

(
0 (𝛼𝑖𝑢 − 1)𝑨

(𝛼𝑢𝑖 − 1)𝑨𝑇 0

)
𝑫− 1

2 𝑬 (𝑙−1) .

(17)

Since 𝛼𝑖𝑢 and 𝛼𝑢𝑖 are learnable, LightKG becomes equivalent to
LightGCN when 𝛼𝑖𝑢 = 𝛼𝑢𝑖 = 1. Therefore, LightKG can be viewed
as an extension of LightGCN, inheriting its ability to efficiently
extract information from interaction graph. This is particularly
important, as many items, especially new ones, may not link to
KGs. Our subsequent experiments (Tab. 7) reveal that many KGRSs
fail to outperform LightGCN when KGs are removed. In contrast,
LightKG achieves superior accuracy both with and without KGs.

4.4.3 Scalar-based Relations as Node Labels. In LightKG, the rela-
tions are encoded as scalar pairs such as 𝛼𝑖𝑢 and 𝛼𝑢𝑖 , which can be
interpreted as implicit labels for different node types. To clarify this
concept clearly, we focus on interaction graphs for simplicity and
without loss of generality. Considering an extreme scenario where
all node embeddings (𝒆) are identical, and each node has the same
number of neighbors (|N |). In traditional models like LightGCN and
KGAT, this uniformity leads to identical aggregation coefficients.
As a consequence, all nodes converge to identical embeddings after
GNN propagation, thereby losing the distinction between different
node types such as users and items. In contrast, LightKG leverages
scalar weights to differentiate node types. Taking one layer of the
GNN as an example, the updated embeddings of user (𝑢) and item
(𝑖) are computed as follows:

𝒆 (𝑙)
𝑢 =

∑︁
𝑖∈N𝑢

𝛼𝑖𝑢√︁
|N𝑢 |

√︁
|N𝑖 |

𝒆 (𝑙−1)
𝑖

=
𝛼𝑖𝑢

|N | 𝒆, (18)

𝒆 (𝑙)
𝑖

=
∑︁
𝑢∈N𝑖

𝛼𝑢𝑖√︁
|N𝑖 |

√︁
|N𝑢 |

𝒆 (𝑙−1)
𝑢 =

𝛼𝑢𝑖

|N | 𝒆. (19)

The distinction between 𝛼𝑖𝑢 and 𝛼𝑢𝑖 ensures that the user and item
embeddings diverge after the propagation of GNN. These scalars
act as implicit labels. For example, 𝛼𝑖𝑢 is the label of user nodes, as
it only appears in the expression of 𝒆𝑢 .

Our subsequent experiments (Fig. 4) reveal that the optimal val-
ues of 𝛽𝑢 and 𝛽𝑖 (refer to Equ. 14) may differ significantly, suggesting

Table 5: Statistics of the datasets.

Statistics User-Item Graph Knowledge Graph
users items interactions entities relations triplets

Amazon-book (AMZ-B) 20,347 4,230 234,323 12,230 21 46,522
MovieLens-1M (ML-1M) 6,039 3,499 573,637 77,799 51 378,151
Book-Crossing (BX) 11,018 9,059 24,644 77,904 27 151,500
Last.FM 1,873 3,847 21,173 9,367 62 15,518

that the embeddings of users and items follow distinct distributions.
As proven in [2], labeling different node types enable the model to
effectively account for the unique characteristics of each node type,
thereby improving its capacity to capture patterns specific to users
and items during the representation learning process.

5 Experiments
We conduct extensive experiments to demonstrate the effectiveness
and efficency of our proposed LightKG. We aim to answer the
following four research questions:

• RQ1: How does LightKG perform compared to the SOTA KGRSs,
in terms of both the recommendation accuracy and the training
efficiency in dense scenarios?

• RQ2: How does LightKG perform in sparse scenarios compared
to the SOTA KGRSs?

• RQ3: With its simplified relation encodings and aggregation
framework, does LightKG effectively utilize KGs in recommen-
dation compared to the SOTA KGRSs?

• RQ4: How does the contrastive layer contribute to the overall
performance of our proposed LightKG?

5.1 Experimental Settings
5.1.1 Datasets and Evaluation Protocol. We select four benchmark
datasets: Last.FM2, Amazon-Book3 (AMZ-B), Book-Crossing4 (BX),
and MovieLens-1M5 (ML-1M). Following SOTA methods [13], we
preprocess ML-1M and AMZ-B by retaining interactions with rat-
ings of at least 4. For AMZ-B, we further apply a 20-core setting,
ensuring that both users and items have a minimum of 20 interac-
tions. For Last.FM and BX, we use the versions released in [22, 25]
without additional modifications. Tab. 5 presents the statistical de-
tails of the datasets. For evaluation, we use the full-rank approach
to generate top-10 recommendations. To evaluate the recommen-
dation accuracy, we adopt widely used metrics, Recall@10 and
MRR@10, following [39].

5.1.2 Baselines. We compare our proposed LightKG with 13 SOTA
baselines, including KG-free RS (LightGCN [7]), embedding-based
KGRSs (CFKG [40], CKE [38]), path-based KGRSs (RippleNet [22],
MCRec [8]), supervised GNN-based KGRSs (KGCN [25], KGNN-
LS [23], KGAT [27], KGIN [29]) and self-supervised GNN-based
KGRSs (MCCLK [43], KGRec [35], DiffKG [9], CL-SDKG [17]).

5.1.3 Implementation Details. All experiments are conducted on
Ubuntu 18.04 with an Intel(R) Xeon(R) Gold 6226R CPU running at
2.90GHz, 64GB of memory, and 8 NVIDIA GeForce GTX 3090 GPU.
To reduce randomness, all experiments are repeated five times. To
ensure the rigor of the experiments, we implement LightKG and
2https://grouplens.org/datasets/hetrec-2011/
3https://jmcauley.ucsd.edu/data/amazon/
4http://www2.informatik.uni-freiburg.de/ cziegler/BX/
5https://grouplens.org/datasets/movielens/1m/

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 6: The results of Recall@10 and MRR@10 of all meth-
ods on the four benchmark datasets. * denotes statistically
significant different by the paired t-test with 𝑝 −value < 0.01.

Model
AMZ-B ML-1M BX Last.FM

Recall MRR Recall MRR Recall MRR Recall MRR

LightGCN 0.1980 0.1052 0.1855 0.3453 0.0468 0.0198 0.2695 0.1204
CFKG 0.1968 0.0987 0.1862 0.3405 0.0802 0.0384 0.2444 0.1100
CKE 0.1979 0.1037 0.1848 0.3457 0.0313 0.0152 0.2453 0.1069

RippleNet 0.1561 0.0838 0.1590 0.3062 0.0445 0.0194 0.1633 0.0656
MCRec 0.1524 0.0791 0.1610 0.3233 0.0512 0.0241 0.2132 0.0941
KGCN 0.1550 0.0738 0.1594 0.3456 0.0867 0.0433 0.2149 0.0924

KGNN-LS 0.1508 0.0750 0.1592 0.3051 0.0731 0.0371 0.2117 0.0891
KGAT 0.1925 0.0997 0.1830 0.3412 0.0499 0.0233 0.2583 0.1152
KGIN 0.2090 0.1099 0.1969 0.3551 0.0801 0.0399 0.2727 0.1242

MCCLK 0.2025 0.1065 0.1853 0.3474 0.0607 0.0359 0.2699 0.1228
KGRec 0.2035 0.1094 0.1960 0.3570 0.1033 0.0540 0.2560 0.1118
DiffKG 0.2039 0.1116 0.1846 0.3428 0.0581 0.0318 0.2520 0.1192

CL-SDKG 0.2036 0.1134 0.1861 0.3428 0.0924 0.0532 0.2409 0.1054

LightKG 0.2120* 0.1173* 0.2029* 0.3785* 0.1154* 0.0515* 0.2929* 0.1350*

all the baselines in RecBole [41], which is a unified, comprehensive
and efficient recommendation library. We set the "stopping-step"
parameter in Recbole to 20, which means that the model will stop
training if no improvement is observed on the validation set for 20
consecutive epochs. The datasets are split into training, validation,
and testing sets using a ratio of 8:1:1. For a fair comparison, the em-
bedding size of all the models is fixed to 64 and the Adam optimizer
is used for optimization with a fixed batch size of 2048. We use
Bayesian Optimization [19] for hyperparameter tuning and each
model is optimized 30 trails per dataset. All parameters including
scalar-based relations are initialized by Xavier uniform. Specifically,
we search learning rate in {0.01, 0.005, 0.001, 0.0005, 0.0001}, the
GNN layers in {1, 2, 3, 4} for all GNN-based KGRSs and the number
of negative samples for training in {1, 2, 5, 10}. For 𝛽𝑢 and 𝛽𝑖 (refer
to Equ. 14), we tune them in {10−4, 10−5, 10−6, 10−7, 10−8, 10−9}.

5.2 Experimental Results and Analysis
5.2.1 Result of RQ1. We evaluate both the recommendation accu-
racy and efficiency of LightKG in dense scenario (sampling ratio:
80%). The results are presented in Tab. 6, where the bolded numbers
represent the best results and the underlined numbers indicate the
second-best. We can draw the following conclusions.

First, while LightKG is specifically designed for sparse scenar-
ios, it also demonstrates outstanding performance in dense scenarios.
LightKG performs exceptionally well across all benchmark datasets,
achieving the highest Recall/MRR on Last.FM, AMZ-B and ML-1M,
with improvements ranging from 1.42% to 10.5%. For BX, it obtains
the highest Recall while ranking third in MRR, closely following
KGRec and CL-SDKG by a narrow margin. These results highlight
the strong generalizability of our simplified GNN framework.

Second, some KGRSs, like KGAT, perform worse than LightGCN
which does not utilize KGs, highlighting their limitations in effectively
using KGs or uncovering valuable insights from interaction graphs.
Similar phenomenons are observed in [36]. Note that LightGCN
outperforms KGAT on AMZ-B, Last.FM and Ml-1M. It aligns with
the slight improvement we observed after removing the attention
mechanism from KGAT (as shown in Tab. 4), as KGAT becomes
more similar to LightGCN once its attention mechanism is removed.

Third, no single baseline model consistently outperforms the others
across the four datasets. Self-supervised methods (e.g., MCCLK and

Table 7: Recall@10 on KG exploitation experiment. Bold
values indicate the best Recall and improvement among all
models and the underlined values indicate the second-best.

Last.FM BX
KG w/o KG Improve KG w/o KG Improve

LightGCN – 0.2695 – – 0.0468 –
CFKG 0.2444 0.2389 2.29% 0.0802 0.0579 38.51%
KGAT 0.2583 0.2640 -2.17% 0.0499 0.0267 86.89%
KGIN 0.2727 0.2588 5.37% 0.0801 0.0345 132.12%

MCCLK 0.2699 0.2608 3.49% 0.0607 0.0306 98.30%
KGRec 0.2560 0.2571 -0.43% 0.1033 0.0487 112.07%
DiffKG 0.2520 0.2517 0.12% 0.0581 0.0210 176.67%
SDKG 0.2327 0.2323 0.17% 0.0924 0.0462 99.87%

LightKG 0.2929 0.2725 7.49% 0.1154 0.0654 76.48%

KGRec) do not always surpass supervised methods (e.g., KGIN).
This may stem from the limitations of random graph augmentation
or overly simplistic, handcrafted cross-view pairing, which may
fail to capture meaningful KG information.

Lastly, we compare the training efficiency, i.e., time consumed
per training epoch, between LightKG and other GNN-based KGRSs,
as shown in Tab. 1. The results indicate that LightKG achieves a
substantially shorter training time than other self- supervised models,
highlighting the efficiency of our designed contrastive layer.Although
models like KGCN, KGNN-LS and KGAT achieve better training
efficiency than LightKG due to the absence of SSL methods, they
fail to obtain accurate recommendation.

5.2.2 Results of RQ2. We now investigate the performance of
LightKG across different sparsity levels. Following the experimen-
tal setup in Section 4.1, we employ random sampling to generate
datasets of varying sizes, representing scenarios with different spar-
sity levels. The specific sampling ratios used are {80%, 40%, 20%, 10%}
on Last.FM and {80%, 40%, 20%, 10%, 5%} onML-1M, with each value
denoting the proportion of interaction records allocated to the train-
ing set. The results are presented in Tab. 2 and Fig. 1.

First, when interaction records are sparse, LightKG outperforms
all other GNN-based KGRSs. As sparsity level increases, LightKG’s
advantage over other GNN-based KGRSs becomes more evident,
ranging from 8.52% to 102.4% on Last.FM. This supports our hy-
pothesis that overly complex structures for capturing full KG se-
mantics are not always beneficial and can hinder learning in sparse
scenarios. Second, despite outperforming other GNN-based KGRSs,
LightKG falls behind CFKG, which is an embedding-based KGRS.
We attribute this to the lower complexity of CFKG, which is only
O(𝑑×𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒), making it even simpler than LightKG. Compared
to CFKG, LightKG exhibits a clear advantage (with an improvement
of 20.1% on average) in dense scenarios and falls slightly behind
(with a drop of 1.39% on average) in sparse scenarios. Therefore,
considering performance across both sparse and dense scenarios,
LightKG shows optimal overall effectiveness.

5.2.3 Results of RQ3. To check whether LightKG can capture the
semantic information in KG with scalar-based relations, we remove
the KG (denoted as w/o KG) and compare the performance before
and after the removal, following the setting of [39].We select several
recently released or well-performing SOTA models for comparison.

The results are illustrated in Tab. 7. Notably, the "Improve" here
ignores marginal effects of performance improvements. For exam-
ple, a 50% increase from 60 to 90 is much harder than from 10 to

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

Last.FM BX ML-1M AMZ-B

0.1

0.2

0.3

Re
ca
ll@

10

Last.FM BX ML-1M AMZ-B

0.1

0.2

0.3

0.4

M
RR

@
10

LightKG

LightKGw/o u

LightKGw/o i

LightKGw/o ui

Figure 3: The impacts of contrastive layer.

15. (1)With the integration of the KG, LightKG shows a significant
improvement in Recall, indicating its effective utilization of the KG to
improve recommendation accuracy. This demonstrates that, despite
the seemingly simplistic approach of encoding relations as scalar
pairs, it effectively captures the semantic information of the KG
while reducing model complexity. (2) Many models perform worse
than LightGCN when completely deprived of KG, indicating their lim-
ited ability to extract meaningful information solely from interaction
graphs. As demonstrated previously, LightKG, as an extension of
LightGCN, can effectively extract meaningful information from in-
teraction graphs. Therefore, LightKG maintains high accuracy even
with a reduced or absent KG, which demonstrates its robustness and
adaptability in various scenarios. (3) In certain scenarios, the removal
of KGs leads to improved accuracy for some models. For example, re-
moving KG from KGAT and KGRec improves accuracy on Last.FM.
This suggests that some overly complex framework may backfire,
failing to effectively leverage KGs. The same phenomenons have
also been observed in [39].

5.2.4 Results of RQ4. We aim to evaluate the effectiveness of con-
trastive layers by conducting ablation experiments with three vari-
ants of LightKG.

• LightKGw/o u: This variant eliminates the contrastive layer for
users by setting 𝛽𝑢 = 0.

• LightKGw/o i: This variant eliminates the contrastive layer for
items by setting 𝛽𝑖 = 0.

• LightKGw/o ui: This variant eliminates contrastive layers for
both users and items by setting 𝛽𝑢 = 𝛽𝑖 = 0.

The results in Fig. 3 lead to the following observations. (1) Com-
paring LightKG and LightKGw/o ui, we observe a notable drop in per-
formance for LightKGw/o ui after the removal of the contrastive layers.
This highlights the critical role and effectiveness of contrastive
layers, emphasizing their importance in enhancing the overall per-
formance of LightKG. (2) A single contrastive layer (either user-side
or item-side) can achieve performance comparable to the complete
framework. For example, LightKGw/o u, LightKGw/o i and LightKG
achieve similar performance on Last.FM and BX. This phenomenon
occurs because the CKG connects users and items through a unified
graph structure. When the contrastive layer is applied to one side
(e.g., users or items), the impact naturally spreads to the other side.

To further explore the impact of contrastive layer parameters, we
fixed the parameter 𝛽𝑢 and 𝛽𝑖 separately on Last.FM, BX, ML-1M
and AMZ-B, while varying the range of the other parameter. The re-
sults are presented in Fig. 4. It can be observed that: (1) Both 𝛽𝑢 and
𝛽𝑖 have an optimal value, and deviating from these values—either
higher or lower—leads to a degradation of model performance. (2)
The optimal values of 𝛽𝑢 and 𝛽𝑖 can differ significantly. For example,
on the ML-1M, the optimal 𝛽𝑢 is 10−5, while the optimal 𝛽𝑖 is 10−7.

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0.28

0.29

0.3

Re
ca
ll@

10

𝛽𝑢 𝛽𝑖

Last.FM
10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0.11

0.12

Re
ca
ll@

10

𝛽𝑢 𝛽𝑖

BX

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0.18

0.19

0.2

0.21

Re
ca
ll@

10

𝛽𝑢 𝛽𝑖

ML-1M
10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

0.2

0.21

0.22

Re
ca
ll@

10

𝛽𝑢 𝛽𝑖

AMZ-B

Figure 4: The impacts of 𝛽𝑢 and 𝛽𝑖 .

This indicates that the distributions of different node types may
vary considerably, further validating the rationale behind LightKG’s
node labeling, as demonstrated earlier.

5.3 Further Exploration of LightKG
5.3.1 Semantic Modeling Capabilities. Since LightKG represents
relations as scalar values, its ability to capture semantic information
may be limited. To evaluate this issue, we calculate the variance
of aggregation coefficients during GNN propagation - a higher
variance suggests better discrimination between different relations.
For LightKG, these coefficients are computed via Eq. 7, whereas
other models derive them from attention weights. As shown in
Tab. 8, LightKG consistently achieves the highest variance across
all datasets, demonstrating its superior capability to capture global
semantic patterns despite its simple scalar-based approach.

Table 8: The variance of aggregation coefficients during GNN.

Last.FM ML-1M BX AMZ-B

KGAT 0.0670 0.0492 0.2248 0.0368
KGRec 0.1273 0.0672 0.3874 0.0514

CL-SDKG 0.1147 0.0694 0.3991 0.0446
KGIN 0.1204 0.0727 0.3433 0.0371

LightKG 0.5500 0.0967 0.4728 0.0932

While LightKG’s scalar-based relation encoding offers computa-
tional efficiency, it exhibits limited capability to discern fine-grained
relational nuances in complex scenarios. For instance, in the ML-
1M dataset, the node “Titanic” is linked to 51 other movies via the
“film-actor-film” relation. LightKG assigns nearly identical aggre-
gation weights (variance = 0.0009) to these edges, whereas KGAT
(variance = 0.0174) demonstrates stronger discriminative power.
This limitation is supported by LightKG’s suboptimal performance
on the MRR metric in the BX dataset. Since MRR relies on the pre-
cise ranking position of positive samples, it demands fine-grained
discrimination among items with subtle semantic differences—a
task inherently more challenging than achieving high Recall.

In summary, LightKG’s simple design excels at capturing global
semantic information, but this comes at the cost of reduced preci-
sion in distinguishing subtle relational details.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Table 9: The scalar values of top-5 relation from each dataset.
For clarity and conciseness, the names of relations have been
approximately substituted.

Last.FM ML-1M BX AMZ-B

1 U-I (5.3) I-U (12.2) U-I (3.2) U-I (9.9)
2 I-U (5.2) U-I (7.6) I-U (2.7) I-U (9.4)
3 artist (4.4) type (6.4) type (1.2) char (8.8)
4 born (3.5) outfit (6.4) written (0.9) written (8.8)
5 act (2.6) act (5.9) series (0.3) write (7.7)

5.3.2 The impact of scalar-based relation. In LightKG, scalar values
quantitatively measure the relative importance of different relation-
ship types for recommendation tasks. To validate this design, we
identify the top-5 most influential relations per dataset based on
their scalar weights. The results are shown in Tab. 9, where the
values in parentheses represent the learned relation scalars.

It can be observed that user-item and item-user interactions
("U-I/I-U") achieve the highest scalar values across all datasets, indi-
cating that direct user-item interactions provide the most influential
recommendation signals. These results demonstrate that direct user-
item interactions consistently outweigh other relational signals in
recommender systems. This empirical evidence aligns with and
strengthens the arguments presented in [39], which critically ex-
amines the actual effectiveness of knowledge graph augmentation
in recommender systems.

6 Related Work
6.1 Knowledge-aware Recommender Systems
Existing KGRSs can be roughly categorized into three types [9].
Embedding-based KGRSs [5, 11, 24, 38, 40] use the distances
and directions in the embedding space to represent relationships
between nodes. For example, CKE [38] uses TransR to enhance
recommendation accuracy by capturing structured semantic rela-
tionships between items in the KGs; CFKG [40] adopts TransE to
model user-item interactions, integrating KG to enhance recom-
mendation accuracy and explainability; and KG4Vis [11] adapts
TransE to model KG relations specifically for automated visualiza-
tion recommender systems.
Path-based KGRSs [1, 4, 8, 15] use methods like random walks
to explore item connections in KGs. For example, RippleNet [22]
uncovers latent user-item associations through "ripple propagation".
MCRec [8] significantly enhances both recommendation accuracy
and diversity by effectively leveraging meta-path contexts, while
PGPR [1] employs reinforcement learning to optimize the quality
of reasoning paths.
GNN-based KGRSs are based on the information aggregation
mechanism of GNNs and can be divided into supervised meth-
ods [23, 25, 29] and self-supervised methods [9, 17, 34–36, 43].
Regarding supervised methods, KGCN [25] and KGNN-LS [23] uti-
lize GCN to aggregate neighborhood information of items in KGs.
Then, KGAT [27] integrates user-item interactions and KGs, using
graph attention to improve recommendations. Inspired by the suc-
cess of self-supervised learning, contrastive learning, as a form of
self-supervised learning, has been increasingly integrated into GNN-
based methods. For example, MCCLK [43] aligns knowledge and
interaction graphs via cross-view contrastive learning. KGCL [36]
reduces data noise through graph contrastive learning [9, 17].

6.2 Sparsity Issue in Recommender Systems
Sparse scenarios arise from limited user-item interaction data, lead-
ing to challenges in providing accurate recommendations [18]. Fail-
ure to address it will lead to user attrition and significant economic
lossess. To tackle this issue, various data augmentation approaches
have been proposed. Auxiliary information, such as KGs [43] and
social networks [33], has been integrated into RSs to enrich the data
available for users or items with sparse interactions. Togashi, et al.
[21] employ an enhanced negative sampling method to mitigate the
popularity bias in sparse scenarios. Moreover, incorporating self-
supervised learning techniques into RSs has emerged as a promising
trend, which addresses the data sparsity issue by extracting addi-
tional supervisory signals from raw data [35, 36, 43]. However, none
of these methods have explored what kind of framework is suitable
for sparse scenarios.

6.3 Simplifying GNN for Different Tasks
Several studies [6, 12] have shown that not all components of GNNs
are universally beneficial. For example, SGC [32], a linear simpli-
fication of GCNs, achieves superior computational efficiency and
parameter economy while maintaining competitive accuracy. Re-
cent work by Luo et al. [14] establishes that traditional GNNs out-
perform all subsequent architectural modifications on standard
node classification benchmarks. In RSs, LightGCN [7], derived from
NGCF [28] through systematic ablation studies, validates that re-
moving nonlinearities and feature transformations can enhance rec-
ommendation performance. These findings collectively underscore
a critical design principle: streamlined GNN architectures—when
carefully tailored to specific application requirements—consistently
deliver enhanced efficiency without compromising effectiveness.

7 Conclusion and Future Work
In this work, we empirically reveal the limited or even detrimental
effect of complex mechanisms, such as attention mechanism in the
existing GNN-based KGRSs. Motivated by this finding, we propose
a simple yet powerful GNN-based KGRS, LightKG, which features a
simplified GNN structure with scalar-based relation encoding and
linear neighbor-information aggregation mechanism, as well as
an efficient contrastive layer to address the over-smoothing issue.
Extensive experimental results demonstrate LightKG’s exceptional
performance, achieving superior recommendation accuracy while
significantly improving training efficiency. Our approach offers
valuable insights for the design of lightweight and effective GNN-
based KGRS. For future work, we will further investigate the role
of each module of LightKG to increase its interpretability. Also,
considering that the emergence of large language models [20, 30]
is generating new types of auxiliary data and also new types of RSs,
we plan to adapt LightKG accordingly.

8 Acknowledgment
This research is supported by the State Key Laboratory of Industrial
Control Technology, China (Grant No. ICT2024C01), and partially
supported by the Fundamental Research Funds for the Central
Universities (2025ZFJH02) and the Ministry of Education, Singa-
pore, under its MOE AcRF Tier 1 SUTD Kickstarter Initiative (SKI
2021_06_12).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

References
[1] Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, and Mirko Marras. 2023. Rein-

forcement recommendation reasoning through knowledge graphs for explanation
path quality. Knowledge-Based Systems 260 (2023), 110098.

[2] Yuanchen Bei, Weizhi Chen, Hao Chen, Sheng Zhou, Carl Yang, Jiapei Fan,
Longtao Huang, and Jiajun Bu. 2024. Correlation-Aware Graph Convolutional
Networks for Multi-Label Node Classification. arXiv preprint arXiv:2411.17350
(2024).

[3] Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao.
2024. On the opportunities and challenges of offline reinforcement learning for
recommender systems. ACM Transactions on Information Systems 42, 6 (2024),
1–26.

[4] Zhendong Chu, Hongning Wang, Yun Xiao, Bo Long, and Lingfei Wu. 2023. Meta
policy learning for cold-start conversational recommendation. In Proceedings of
the 16th ACM International Conference on Web Search and Data Mining. 222–230.

[5] Saman Forouzandeh, Kamal Berahmand, Razieh Sheikhpour, and Yuefeng Li. 2023.
A new method for recommendation based on embedding spectral clustering in
heterogeneous networks (RESCHet). Expert Systems with Applications 231 (2023),
120699.

[6] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.
Predict then propagate: Graph neural networks meet personalized pagerank.
arXiv preprint arXiv:1810.05997 (2018).

[7] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 639–648.

[8] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-
path based context for top-n recommendation with a neural co-attention model.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1531–1540.

[9] Yangqin Jiang, Yuhao Yang, Lianghao Xia, and Chao Huang. 2024. Diffkg: Knowl-
edge graph diffusion model for recommendation. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining. 313–321.

[10] Dongze Li, Hanbing Qu, and Jiaqiang Wang. 2023. A survey on knowledge
graph-based recommender systems. In 2023 China Automation Congress (CAC).
IEEE, 2925–2930.

[11] Haotian Li, Yong Wang, Songheng Zhang, Yangqiu Song, and Huamin Qu. 2021.
KG4Vis: A knowledge graph-based approach for visualization recommendation.
IEEE Transactions on Visualization and Computer Graphics 28, 1 (2021), 195–205.

[12] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. 2019.
Label efficient semi-supervised learning via graph filtering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9582–9591.

[13] Xinhang Li, Zhaopeng Qiu, Xiangyu Zhao, Zihao Wang, Yong Zhang, Chunxiao
Xing, and Xian Wu. 2022. Gromov-wasserstein guided representation learning
for cross-domain recommendation. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 1199–1208.

[14] Yuankai Luo, Lei Shi, and Xiao-MingWu. 2024. Classic GNNs are Strong Baselines:
Reassessing GNNs for Node Classification. Advances in Neural Information
Processing Systems (2024).

[15] Sung-Jun Park, Dong-Kyu Chae, Hong-Kyun Bae, Sumin Park, and Sang-Wook
Kim. 2022. Reinforcement learning over sentiment-augmented knowledge graphs
towards accurate and explainable recommendation. In Proceedings of the 15th
ACM International Conference on Web Search and Data Mining. 784–793.

[16] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. Uncertainty in
Artificial Intelligence (2012).

[17] Lei Shi, Jiapeng Yang, Pengtao Lv, Lu Yuan, Feifei Kou, Jia Luo, and Mingying Xu.
2024. Self-derived Knowledge Graph Contrastive Learning for Recommendation.
In Proceedings of the 32nd ACM International Conference on Multimedia. 7571–
7580.

[18] Wentao Shi, Xiangnan He, Yang Zhang, Chongming Gao, Xinyue Li, Jizhi Zhang,
QifanWang, and Fuli Feng. 2024. Enhancing Long-TermRecommendationwith Bi-
level Learnable Large Language Model Planning. arXiv preprint arXiv:2403.00843
(2024).

[19] Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong,
and Jie Zhang. 2022. Daisyrec 2.0: Benchmarking recommendation for rigorous
evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 7
(2022), 8206–8226.

[20] Zhu Sun, Hongyang Liu, Xinghua Qu, Kaidong Feng, Yan Wang, and Yew Soon
Ong. 2024. Large language models for intent-driven session recommendations.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 324–334.

[21] Riku Togashi, Mayu Otani, and Shin’ichi Satoh. 2021. Alleviating cold-start
problems in recommendation through pseudo-labelling over knowledge graph.
In Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. 931–939.

[22] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 417–426.

[23] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao,
Wenjie Li, and ZhongyuanWang. 2019. Knowledge-aware graph neural networks
with label smoothness regularization for recommender systems. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 968–977.

[24] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-task feature learning for knowledge graph enhanced recom-
mendation. In The World Wide Web Conference. 2000–2010.

[25] HongweiWang,Miao Zhao, Xing Xie,Wenjie Li, andMinyi Guo. 2019. Knowledge
graph convolutional networks for recommender systems. In The World Wide Web
Conference. 3307–3313.

[26] TongzhouWang and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning. PMLR, 9929–9939.

[27] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950–958.

[28] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd International ACM
SIGIR Vonference on Research and Development in Information Retrieval. 165–174.

[29] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu,
Xiangnan He, and Tat-Seng Chua. 2021. Learning intents behind interactions
with knowledge graph for recommendation. In Proceedings of the Web Conference
2021. 878–887.

[30] Ziyan Wang, Yingpeng Du, Zhu Sun, Haoyan Chua, Kaidong Feng, Wenya Wang,
and Jie Zhang. 2025. Re2llm: Reflective reinforcement large language model
for session-based recommendation. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 39. 12827–12835.

[31] Minwei Wen, Hongyan Mei, Wei Wang, Xiaorong Xue, and Xing Zhang. 2024.
Multi-task recommendation based on dynamic knowledge graph. Applied Intelli-
gence (2024), 1–19.

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861–6871.

[33] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.
Diffnet++: A neural influence and interest diffusion network for social recom-
mendation. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),
4753–4766.

[34] Zhizhong Wu. 2024. An efficient recommendation model based on knowledge
graph attention-assisted network (kgatax). arXiv preprint arXiv:2409.15315 (2024).

[35] Yuhao Yang, Chao Huang, Lianghao Xia, and Chunzhen Huang. 2023. Knowledge
graph self-supervised rationalization for recommendation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 3046–
3056.

[36] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge
graph contrastive learning for recommendation. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1434–1443.

[37] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[38] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 353–362.

[39] Haonan Zhang, Dongxia Wang, Zhu Sun, Yanhui Li, Youcheng Sun, Huizhi Liang,
andWenhaiWang. 2024. Does Knowledge Graph Really Matter for Recommender
Systems? ACM Transactions on Information Systems (2024).

[40] Y Zhang, Q Ai, X Chen, and P Wang. 2018. Learning over knowledge-base
embeddings for recommendation. arXiv preprint arXiv:1803.06540 (2018).

[41] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan
Lin, Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. 2022. RecBole
2.0: towards a more up-to-date recommendation library. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management.
4722–4726.

[42] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[43] Ding Zou, Wei Wei, Xian-Ling Mao, Ziyang Wang, Minghui Qiu, Feida Zhu,
and Xin Cao. 2022. Multi-level cross-view contrastive learning for knowledge-
aware recommender system. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1358–1368.

LightKG: Efficient Knowledge-Aware Recommendations with Simplified GNN Architecture KDD ’25, August 3–7, 2025, Toronto, ON, Canada

A APPENDIX
A.1 The Complete Results of Fig. 1
In Section 3.1, we examine the performance of 12 SOTA KGRSs
across different sparsity levels on Last.FM, ML-1M and AMZ-B.

Table 10: The Recall@10 of different models across different
sparsity scenarios on Last.FM.

Model 80% 40% 20% 10%

CFKG 0.2444 0.1797 0.1082 0.0983
CKE 0.2453 0.1522 0.0544 0.0243

RippleNet 0.1633 0.1192 0.0774 0.0530
MCRec 0.2132 0.1243 0.0935 0.0825
KGCN 0.2149 0.1259 0.0677 0.0425

KGNNLS 0.2117 0.1281 0.0631 0.0378
KGAT 0.2583 0.1410 0.0664 0.0202
KGIN 0.2727 0.1711 0.0770 0.0289

MCCLK 0.2699 0.1759 0.0555 0.0149
KGRec 0.2560 0.1758 0.0876 0.0291
Diffkg 0.2520 0.1551 0.0479 0.0177

CL-SDKG 0.2409 0.1802 0.0621 0.0204

path𝑚𝑎𝑥 0.2132 0.1243 0.0935 0.0825
embedding𝑚𝑎𝑥 0.2453 0.1797 0.1082 0.0983

GNN𝑚𝑎𝑥 0.2727 0.1802 0.0876 0.0425

LightKG 0.2929 0.21202 0.1012 0.0861
Improve 7.41% 17.66% 15.49% 102.40%

Table 11: The MRR@10 of different models across different
sparsity scenarios on Last.FM.

Model 80% 40% 20% 10%

CFKG 0.1100 0.0717 0.0329 0.0304
CKE 0.1069 0.0590 0.0200 0.0094

RippleNet 0.0656 0.0416 0.0259 0.0196
MCRec 0.0941 0.0433 0.0296 0.0231
KGCN 0.0924 0.0474 0.0232 0.0145

KGNNLS 0.0891 0.0460 0.0216 0.0110
KGAT 0.1152 0.0529 0.0227 0.0082
KGIN 0.1242 0.0667 0.0294 0.0130

MCCLK 0.1228 0.0676 0.0204 0.0058
KGRec 0.1118 0.0673 0.0310 0.0125
Diffkg 0.1192 0.0620 0.0195 0.0059

CL-SDKG 0.1054 0.0571 0.0155 0.0079

path-based𝑚𝑎𝑥 0.0941 0.0433 0.0296 0.0231
embedding𝑚𝑎𝑥 0.1100 0.0717 0.0329 0.0304

GNN𝑚𝑎𝑥 0.1242 0.0676 0.0310 0.0145

LightKG 0.1350 0.0819 0.0396 0.0267
Improve 8.61% 21.15% 27.74% 84.14%

Table 12: The Recall@10 of different models across different
sparsity scenarios on ML-1M.

Model 80% 40% 20% 10% 5%

CFKG 0.1862 0.1272 0.0925 0.0615 0.0603
CKE 0.1848 0.1136 0.0760 0.0604 0.0473

RippleNet 0.1590 0.1031 0.0694 0.0619 0.0575
MCRec 0.1610 0.1051 0.0690 0.0603 0.0550
KGCN 0.1594 0.1014 0.0738 0.0604 0.0575

KGNNLS 0.1592 0.0945 0.0711 0.0601 0.0542
KGAT 0.1830 0.1124 0.0833 0.0585 0.0311
KGIN 0.1969 0.1254 0.0802 0.0612 0.0557

MCCLK 0.1853 0.1198 0.0841 0.0523 0.0475
KGRec 0.1960 0.1290 0.0934 0.0572 0.0399
DiffKG 0.1846 0.0846 0.0615 0.0512 0.0357

CL-SDKG 0.1861 0.1122 0.0742 0.0602 0.0445

path𝑚𝑎𝑥 0.1610 0.1051 0.0694 0.0619 0.0575
embedding𝑚𝑎𝑥 0.1862 0.1272 0.0925 0.0615 0.0603

GNN𝑚𝑎𝑥 0.1969 0.1290 0.0934 0.0612 0.0575

LightKG 0.2015 0.1284 0.0996 0.0699 0.0587
Improve 2.33% -0.47% 6.65% 14.22% 2.16%

Table 13: The MRR@10 of different models across different
sparsity scenarios on ML-1M.

Model 80% 40% 20% 10% 5%

CFKG 0.3405 0.2025 0.1487 0.1077 0.1047
CKE 0.3457 0.1878 0.1354 0.1092 0.0904

RippleNet 0.3062 0.1729 0.1250 0.1103 0.1021
MCRec 0.3233 0.1757 0.1245 0.1099 0.1032
KGCN 0.3456 0.1734 0.1307 0.1084 0.1029

KGNNLS 0.3051 0.1688 0.1279 0.107 0.0989
KGAT 0.3412 0.1870 0.1408 0.1101 0.0647
KGIN 0.3551 0.1976 0.1349 0.1157 0.1004

MCCLK 0.3474 0.1900 0.1431 0.1063 0.0815
KGRec 0.3570 0.2029 0.1544 0.1086 0.0834
DiffKG 0.3428 0.1594 0.1202 0.0492 0.0378

CL-SDKG 0.3428 0.1858 0.1329 0.1052 0.0857

path𝑚𝑎𝑥 0.3233 0.1757 0.125 0.1103 0.1032
embedding𝑚𝑎𝑥 0.3457 0.2025 0.1487 0.1077 0.1047

GNN𝑚𝑎𝑥 0.3570 0.2029 0.1544 0.1157 0.1029

LightKG 0.3785 0.2032 0.1491 0.1237 0.1032
Improve 6.02% 0.14% -3.43% 5.10% 0.09%

Table 14: The Recall@10 of different models across different
sparsity scenarios on AMZ-B.

Model 80% 40% 20% 10%

CFKG 0.1968 0.1357 0.1098 0.0840
CKE 0.1979 0.1177 0.0631 0.0237

RippleNet 0.1561 0.1006 0.0753 0.0446
MCRec 0.1524 0.0983 0.0723 0.0461
KGCN 0.1550 0.1058 0.0757 0.0551

KGNNLS 0.1508 0.0948 0.0728 0.0525
KGAT 0.1925 0.1356 0.0679 0.0351
KGIN 0.2090 0.1455 0.0911 0.0765

MCCLK 0.2025 0.1468 0.1005 0.0671
KGRec 0.2035 0.1448 0.0986 0.0771
DiffKG 0.2039 0.1355 0.0843 0.0439

CL-SDKG 0.2036 0.1367 0.0947 0.0685

path𝑚𝑎𝑥 0.1561 0.1006 0.0753 0.0461
embedding𝑚𝑎𝑥 0.1979 0.1357 0.1098 0.0840

GNN𝑚𝑎𝑥 0.2090 0.1468 0.1005 0.0771

LightKG 0.2120 0.1582 0.1148 0.0931
Improve 1.44% 7.77% 14.23% 20.75%

Table 15: The MRR@10 of different models across different
sparsity scenarios on AMZ-B.

Model 80% 40% 20% 10%

CFKG 0.0987 0.0632 0.0515 0.0422
CKE 0.1037 0.0575 0.0266 0.0146

RippleNet 0.0838 0.0484 0.0422 0.0257
MCRec 0.0791 0.0472 0.0415 0.0274
KGCN 0.0738 0.0501 0.0418 0.0309

KGNNLS 0.0750 0.0482 0.0396 0.0247
KGAT 0.0997 0.0652 0.0283 0.0169
KGIN 0.1099 0.0722 0.0452 0.0407

MCCLK 0.1065 0.0715 0.5050 0.0389
KGRec 0.1094 0.0707 0.0483 0.0415
DiffKG 0.1116 0.0622 0.0457 0.0286

CL-SDKG 0.1134 0.0635 0.0473 0.0404

path𝑚𝑎𝑥 0.0838 0.0484 0.0422 0.0274
embedding𝑚𝑎𝑥 0.1037 0.0632 0.0515 0.0422

GNN𝑚𝑎𝑥 0.1134 0.0722 0.0505 0.0415

LightKG 0.1173 0.0762 0.0577 0.0472
Improve 3.44% 5.54% 14.26% 13.73%

Due to the sparsity of the BX dataset, it is difficult to further
reduce the sampling rate, making it infeasible for us to conduct
experiments on it.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada YanHui Li, Dongxia Wang, Zhu Sun, Haonan Zhang, and Huizhong Guo

A.2 The Complete Results of Tab. 3
We show the complete results of Tab. 3. The sampling ratio is set
10% for Last.FM and AMZ-B, 5% for ML-1M. Since the BX dataset is
already extremely sparse, 80% sampling ratio is sufficient.The Pear-
son correlation coefficients on four datasets are all negative.

Table 16: The results of complexity analysis.
Model Time Complexity (ranked from low to high) Last.FM ML-1M Amz-B BX

KGCN O(𝑑 (| G𝐾𝐺 | + |R | × |U | + |I |)) 0.0425 0.0575 0.0551 0.0867
KGNNLS O(𝑑 (| G𝐾𝐺 | + |V | + |U | × |R |)) 0.0378 0.0542 0.0525 0.0731
KGIN O(𝑑 | G𝐾𝐺 | + 𝑑2 | G𝑈 𝐼 |) 0.0289 0.0557 0.0765 0.0801
KGRec O(𝑑2 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0291 0.0398 0.0771 0.1033
DiffKG O(𝑑2 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0177 0.0357 0.0439 0.0581

CL-SDKG O(𝑑2 (| G𝐾𝐺 | + |U |) + 𝑑 | G𝑈 𝐼 |) 0.0204 0.0445 0.0685 0.0924
KGAT O(𝑑2 (| G𝐾𝐺 | + | G𝑈 𝐼 | + |U | + |I | + |V |)) 0.0202 0.0311 0.0351 0.0499
MCCLK O(𝑑3 | G𝐾𝐺 | + 𝑑 | G𝑈 𝐼 |) 0.0149 0.0475 0.0671 0.0607

Correlation -0.9374 -0.6682 -0.1145 -0.4836

A.3 The Complete Results of Tab. 4
Last, we present the rest of experimental results with the atten-
tion mechanism removed. Noticing that removing the attention
mechanism leads to a slight decline in performance on the AMZ-B,
we attribute this to the method we used to remove the attention
mechanism being too crude, which damaged the model’s structure.
This slight decline does not affect our conclusion: the attention
mechanism is useless even harmful in GNN-based KGRSs.
Table 17: The MRR@10 after removing the attention mecha-
nism on Last.FM.

model 80% 40% 20% 10%

KGAT 0.1152 0.0529 0.0227 0.0082
KGAT𝑎− 0.1172 0.0475 0.0264 0.0096

KGIN 0.1243 0.0667 0.0294 0.0130
KGIN𝑎− 0.1241 0.0654 0.0301 0.0138

MCCLK 0.1228 0.0676 0.0204 0.0058
MCCLK𝑎− 0.1215 0.0668 0.0209 0.0059

KGRec 0.1117 0.0673 0.0310 0.0125
KGRec𝑎− 0.1140 0.0669 0.0311 0.0125

DiffKG 0.1192 0.0620 0.0195 0.0059
DiffKG𝑎− 0.1177 0.0627 0.0195 0.0067

CL-SDKG 0.1054 0.0571 0.0155 0.0079
CL-SDKG𝑎− 0.1059 0.0562 0.0157 0.0079

Average 0.1164 0.0623 0.0231 0.0089
Average𝑎− 0.1167 0.0609 0.0240 0.0094
Improve 0.26% -2.17% 3.75% 5.82%

Table 18: The Recall@10 after removing the attention mech-
anism on ML-1M.

Model 80% 40% 20% 10% 5%

KGAT 0.1830 0.1124 0.0833 0.0585 0.0311
KGAT𝑎− 0.1837 0.1152 0.0795 0.0611 0.0317

KGIN 0.1969 0.1254 0.0802 0.0612 0.0557
KGIN𝑎− 0.1971 0.1250 0.0799 0.0607 0.0554

MCCLK 0.1853 0.1198 0.0841 0.0723 0.0475
MCCLK𝑎− 0.1860 0.1193 0.0841 0.0693 0.0478

KGRec 0.1960 0.1290 0.0934 0.0572 0.0399
KGRec𝑎− 0.1966 0.1293 0.0942 0.0600 0.0399

DiffKG 0.1846 0.0846 0.0615 0.0512 0.0357
DiffKG𝑎− 0.1892 0.0877 0.0611 0.0557 0.0391

CL-SDKG 0.1861 0.1122 0.0742 0.0602 0.0445
CL-SDKG𝑎− 0.1881 0.1134 0.0795 0.0611 0.0473

Average 0.1887 0.1139 0.0795 0.0601 0.0424
Average𝑎− 0.1901 0.1150 0.0797 0.0613 0.0435
Improve 0.76% 0.95% 0.33% 2.02% 2.70%

Table 19: The MRR@10 after removing the attention mecha-
nism on ML-1M.

model 80% 40% 20% 10% 5%

KGAT 0.3412 0.187 0.1408 0.1101 0.0647
KGAT𝑎− 0.3413 0.1885 0.1349 0.1101 0.0638

KGIN 0.3551 0.1976 0.1349 0.1157 0.1004
KGIN𝑎− 0.3596 0.1950 0.1362 0.1152 0.0996

MCCLK 0.3474 0.1900 0.1431 0.1063 0.0815
MCCLK𝑎− 0.3475 0.1898 0.1434 0.1081 0.0823

KGRec 0.3570 0.2029 0.1544 0.1086 0.0834
KGRec𝑎− 0.3567 0.2070 0.1565 0.1124 0.0834

DiffKG 0.3428 0.1594 0.1202 0.0492 0.0378
DiffKG𝑎− 0.3441 0.1616 0.1215 0.0509 0.0385

CL-SDKG 0.3428 0.1858 0.1329 0.1052 0.0857
CL-SDKG𝑎− 0.3444 0.1872 0.1338 0.1067 0.0877

Average 0.3477 0.1871 0.1377 0.0992 0.0756
Average𝑎− 0.3489 0.1882 0.1377 0.1006 0.0759
Improve 0.35% 0.57% 0.00% 1.39% 0.40%

Table 20: The Recall@10 after removing the attention mech-
anism on AMZ-B.

Model 80% 40% 20% 10%

KGAT 0.1925 0.1356 0.0679 0.0351
KGAT𝑎− 0.1872 0.1342 0.0666 0.0316

KGIN 0.2090 0.1455 0.0911 0.0765
KGIN𝑎− 0.2081 0.1466 0.0901 0.0738

MCCLK 0.2025 0.1468 0.1005 0.0671
MCCLK𝑎− 0.2016 0.1477 0.1042 0.0671

KGRec 0.2035 0.1448 0.0986 0.0771
KGRec𝑎− 0.2041 0.1476 0.0976 0.0773

DiffKG 0.2039 0.1355 0.0843 0.0439
DiffKG𝑎− 0.2098 0.1394 0.0875 0.0477

CL-SDKG 0.2036 0.1367 0.0947 0.0685
CL-SDKG𝑎− 0.2050 0.1379 0.0964 0.0697

Average 0.2025 0.1408 0.0895 0.0614
Average𝑎− 0.2026 0.1422 0.0904 0.0612
Improve 0.07% 1.01% 0.99% -0.28%

Table 21: The MRR@10 after removing the attention mecha-
nism on AMZ-B.

model 80% 40% 20% 10%

KGAT 0.0997 0.0652 0.0283 0.0169
KGAT𝑎− 0.0956 0.0644 0.0275 0.0143

KGIN 0.1099 0.0722 0.0452 0.0407
KGIN𝑎− 0.1097 0.0731 0.0452 0.0391

MCCLK 0.1065 0.0715 0.0505 0.0389
MCCLK𝑎− 0.1067 0.0711 0.0508 0.0389

KGRec 0.1094 0.0707 0.0483 0.0415
KGRec𝑎− 0.1083 0.0699 0.0477 0.0406

DiffKG 0.1116 0.0622 0.0457 0.0286
DiffKG𝑎− 0.1159 0.0627 0.0462 0.0291

CL-SDKG 0.1134 0.0635 0.0473 0.0404
CL-SDKG𝑎− 0.1138 0.0631 0.0479 0.0408

Average 0.1084 0.0676 0.0442 0.0345
Average𝑎− 0.1083 0.0674 0.0442 0.0338
Improve -0.08% -0.25% 0.00% -2.03%

	Abstract
	1 Introduction
	2 Preliminary
	3 Motivation
	3.1 Impact of Interaction Sparsity
	3.2 Impact of Model Complexity
	3.3 Impact of Removing Attention Mechanisms

	4 LightKG
	4.1 Simplified GNN Layer
	4.2 Efficient Contrastive Layer
	4.3 Model Prediction and Loss Function
	4.4 Model Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results and Analysis
	5.3 Further Exploration of LightKG

	6 Related Work
	6.1 Knowledge-aware Recommender Systems
	6.2 Sparsity Issue in Recommender Systems
	6.3 Simplifying GNN for Different Tasks

	7 Conclusion and Future Work
	8 Acknowledgment
	References
	A APPENDIX
	A.1 The Complete Results of Fig. 1
	A.2 The Complete Results of Tab. 3
	A.3 The Complete Results of Tab. 4

